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Abstract
In Times Square, NYC, a large screen wraps around a building. In late 2024, a perfume bottle would dance inside
the screen and then pop out of it. In the National Gallery in London, there is a distorted painting of a Dutch interior
across the inside of a box. When viewed through a peephole, one sees a distortion-free 3𝐷 image of the interior. We
have designed an origami piece that has distorted silhouettes and a pattern of triangles and distorted rectangles. When
folded and viewed from the correct vantage point an illusion of a chessboard on the floor of a cube and silhouettes
on the faces emerges. All three of the objects draw on a specific application of projective geometry. A second
application is an animation that draws an ice skater that then moves around within the 3𝐷 space of a photograph. In
this paper, we will reveal how the math works and use vector algebra as an alternative to traditional tools like a ruler
and compass, a projector, or specialized design software.

Introduction

When we learned to draw from life, we were taught to project what we saw onto a flat piece of paper, using an
outstretched arm and a pencil to measure proportions. If done carefully, this method could produce a drawing
comparable to what a conventional camera would see — an image built on rectilinear perspective. There are
many other ways to make an image. This paper describes how to make an image on a multifaceted surface
so that the image looks correct from a specific vantage point. This illusion goes back at least four centuries,
and there are many tools available for an artist to achieve it. In this paper, we shall employ vector algebra.

Early examples of images made on multi-faceted surfaces are the perspective boxes of Samuel van
Hoogstraten constructed in the 1600s. Figure 1(a) presents one example that is in the National Gallery in
London. From the outside, the interior appears crooked. If viewed from the visible hole on the left side
face of the box with one eye, a distortion-free painting of a Dutch interior emerges in 3𝐷. David Broomfield
provides a detailed analysis of how the perspective works using, the language of geometry and speculates
about how van Hoogstraten would have both designed it and constructed it [1]. The fact that many of the
planes of the box are parallel to the corresponding planes of the conceptualized Dutch interior simplifies the
problem somewhat. Remarkably, there is a second peephole on the right side of the box, and the interior
looks correct from this one as well!

We made the photograph in Figure 1(b) from the downtown-westside corner of 45th Street and Seventh
Avenue. The image shows a digital sign that goes around the corner of a building. From this vantage point
the distortions in the image were minimal. The advertisement was animated: the perfume bottle danced
around the inside of the box before popping outside of the box. Several trompe-l’œil techniques enhance the
illusion of 3𝐷 as well. The box has a frame that is part of the screen but is easy to read as being a physical
frame. Further, there is an image of a billboard that reads as if it were slightly in front of the box, enhancing
the sense of space. Finally, when they animate the perfume bottle, it comes in front of the virtual frame of
the box, but the designers have been careful to ensure that the corners of the perfume bottle are never cropped
in the real screen as this would break the illusion of a real bottle floating in front of the box.

Figure 1(c) is an origami piece that we have designed that when folded and viewed from the correct
vantage point becomes Figure 3(c). The mathematical idea behind each of these three pieces is the same—
projecting an image onto a multi-faceted surface such that when viewed from a specific vantage point they
become the desired image.
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Figure 1: Perspective boxes across the centuries: (a) Hoogstraten, (b) Times Square, (c) Our Origami
Model

Artists use many different tools for accomplishing such illusions including shadow techniques, rulers,
compasses, projectors, graphic design software, and commercial solutions. In this paper, we demonstrate an
approach that combines vector algebra with software used by data scientists. The approach can be done on a
small scale and allows for animation as well as the mapping of an image to a complex multi-faceted surface.

This paper first lays out the mathematics of a generic solution to the problem and then shows an
application of the approach. We follow this with a discussion of alternative approaches that use different
techniques, and these alternatives can be seen as applications of the generic approach. We then show how
the approach can be used to animate an anamorphism and finish off with concluding remarks and suggestions
for future work. A Gallery Supplement accompanies the paper and provides links to additional animations.

The Mathematics

Suppose we have a drawing (e.g., a silhouette or the squares of a chessboard) defined in three-dimensional
space by a set of points in a specific order. For the examples considered in this paper, these points are
coplanar but they need not be. We also have a picture frame and another bounded region of a plane in 3𝐷
space defined by a set of coplanar vertices, which we will refer to as the polygon (e.g., the face of a box).
Using mathematics, we can project the drawing onto both the picture frame and the polygon. In fact, we can
solve for the intersections of the drawing’s points with both the picture frame and the polygon. If we can
solve for one polygon, we can solve for all the intersections with all visible polygons as well. If we know
where the drawing intersects the polygon in the picture frame, we can solve for where it intersects the actual
polygon and vice versa. Figure 2 demonstrates how the mathematics works: it is a side view of a cube with
three figure skaters positioned on it. As it is a side view, the picture frame is a line segment. The cube has
been rotated so that only two faces are visible. Figure 3(a) is a photograph which is the real world analog to
Figure 2 with the sensor of the camera becoming the picture frame.

Consider a polygon in 3𝐷 space defined by at least three coplanar points that are not collinear (e.g., one
of the faces of the glass cube). Let a drawing be defined by a set of points in a specific order in 3𝐷 space
(e.g., one of the figure skaters in the picture).

For convenience, we will define the picture plane as the plane in which 𝑍 is equal to 1 and we will place
the vantage point at the origin (in 3𝐷 space). It is convenient to define the picture frame by its four corners
which in turn can be defined by the angle of view:

𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝐹𝑟𝑎𝑚𝑒 = {(−𝑣,−𝑣, 1), (𝑣,−𝑣, 1), (𝑣, 𝑣, 1), (−𝑣, 𝑣, 1)}
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where 𝑣 = 𝑎𝑡𝑎𝑛(𝜃/2) and 𝜃 is the angle of view.
Using this setup, any point in 3𝐷 space can be mapped to a point on the picture plane by simply dividing

its 𝑥 and 𝑦 coordinates by its 𝑧 coordinate (provided 𝑧 does not equal 0). One can determine if the projected
point is inside the picture frame by testing whether or not the absolute value of both the 𝑥 and the 𝑦 coordinate
are less than 𝑣.

We use linear algebra to solve for where a ray intersects a plane. We can represent any point on a plane
defined by a starting point 𝑋𝑌𝑍0 and two vectors 𝐴 and 𝐵 as the staring point plus a linear combination of
the two vectors :

𝑋𝑌𝑍0 + 𝐴𝐵

[
𝑡1
𝑡2

]
where 𝑋𝑌𝑍0 would be one point in the polygon and 𝐴 and 𝐵 would be the difference between 𝑋𝑌𝑍0 and two
other points in the polygon. The three points cannot be collinear. The matrix 𝐴𝐵 is 3× 2 and the first column
is the vector 𝐴 and the second is 𝐵. For example, the arrows 𝐴 and 𝐵 (when used with their intersection for
𝑋𝑌𝑍0) in Figure 2 represent the vectors that define the plane of the visible right-hand face of the cube in 3𝐷
space . Likewise, the vectors 𝐴′ and 𝐵′ in Figure 2 define the plane of the visible left-hand face in the cube.

We define the ray through a point on the picture plane and the origin as:

𝑡3


𝑥𝑖
𝑦𝑖
1


where 𝑡3 is a scaler. We wish to solve for 𝑡1, 𝑡2, 𝑡3 such that the ray from the origin intersects with the plane
defined by the polygon:

𝐴𝐵𝐶


−𝑡1
−𝑡2
𝑡3

 = 𝑋𝑌𝑍0

where 𝐴𝐵𝐶 is the square matrix formed by combining the matrix 𝐴𝐵 with the vector [𝑥𝑖 , 𝑦𝑖 , 1]𝑇 . This
system of three equations and three unknowns can be solved by left multiplying both sides of the equation by
the inverse of the matrix 𝐴𝐵𝐶 (provided the ray is not parallel to the plane in which case the matrix is not
invertible).

Once one determines where the ray intersects the plane one needs to determine if the projection of
this point onto the picture plane lies inside the projection of the polygon onto the picture plane. There are
algorithms for determining whether or not a point lies inside a generic polygon. We find that the function
pointsInPolygon from the R package secr is effective for this task.

One repeats this process for each of the polygons that are visible from the vantage point (e.g., the three
visible faces of the cube). In practice, every point in the drawing need not map to a visible portion of the
polygon in the picture frame. In our first application, we aimed to have every point in the set of drawings lie
inside one of the visible faces, and we have adjusted both the position and the scale of the drawings as well
as the angle of view to achieve this objective.

First Application

Suppose we had a glass cube. We could paint drawings on the different faces of the cube. We could hold
the cube so that we would be able to see all the drawings on all six faces of the cube. In this application, we
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Figure 2: Side view of an anamorphic origami box

seek to create the illusion of figures drawn on six faces of a cube by folding a single square piece of opaque
paper into a corner of a cube. This folded cube represents drawings on all six faces of the implied cube even
though only three physical faces exist. In order to do this, we need to be able to project the drawings of the
hidden faces onto the visible faces such that when projected onto the picture plane they correspond to what
the camera would see if it were a glass cube.

The square piece of paper in Figure 1(c) , repeated in Figure 3(d), is a solution to this problem. When
folded into a corner using two mountain folds and a valley fold, viewed from the proper vantage point it
becomes Figure 3(c). The light-blue pattern of polygons on the left become a chessboard. There are six
silhouettes of ice skaters. In the middle right of Figure 3(d), the one labeled 5 appears distortion free and has
the correct orientation. This silhouette is distortion free in the sense that it is based on an accurate tracing of
an actual photograph of an ice skater taken with a telephoto lens, using the methodology in [2]. There are
three other distortion-free skaters (labeled 1,4, and 6) on the paper but with different orientations and there
are two other distorted skaters (labeled 2 and 3). Distorted in the sense that the front arm is very extended
and much longer than the skater’s other arms and legs. When folded and viewed from the correct vantage
point, one skater appears as if painted on each of the four sides of the cube as well as the two on top of the
cube. The floor of the cube appears as a chessboard. This piece is constructed as follows.

The first step is to have a conceptual glass cube in cube space—a space in which each of the edges of
the cube are parallel to a corresponding 𝑥, 𝑦 or 𝑧 axis. As we have a connect the dots representation of the
skater and a chessboard, we can conceptually place them on the faces as desired in (cube space). We rotate
the cube and project each shape onto the picture frame to produce Figure 3(b) – the conceptual camera view.

Once we have projections of each drawing on the picture frame, we associate each point with the visible
face which when projected they lie inside. Once we have associated the points with a visible face, we can
determine where they intersect with the corresponding plane.

We see the back two skaters, as well the chessboard, by looking through the transparent cube. Figure 2
shows the conceptual side view with skaters 1 and 2 labeled. The gray skater is the ’ghost skater,’ representing
where we would see the skater on a glass cube if we had such a cube. The green lines drawn between the
origin and the gray skater’s outreached arm and foot connect with the corresponding points of the distorted
blue skater (labeled 2) seen in the visible face and then intersect with the picture frame, which appears as a
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Figure 3: An origami application: (a) photograph of side view, (b) conceptual camera view, (c) origami
model folded, (d) origami model before folding (clockwise from upper left)

line segment from this orientation. Figure 3(a) shows the corresponding side view taken of the actual piece
and the camera used to take the photo in Figure 3(c). Our intent was to place the camera at the correct vantage
point by aligning the lines of the chessboard when looking through the camera, but it appears we placed the
camera a bit too far back and a bit too high. Nevertheless, the illusion is successful: the chessboard looks
like a chessboard and the skaters are defining the other faces of the cube.

Once we have the drawings on each of the visible faces in camera space, we need to transform them
onto the flat plane of the paper so that they can be folded as intended. The drawings can be converted back
to cube space by rotating the cube such that the front face becomes orthogonal to the picture frame. Once
in cube space, we need to map the drawings onto the actual piece of paper. Specifically, we map the top
face to the upper-right square of the paper, the left side face to the upper-left square of the paper (rotated
90 degrees clockwise). Finally, we map the right face to the lower-left square of the paper (also rotated 90
degrees clockwise). As the lower-right square of the paper is between the folds, it disappears when folded
and is a convenient place to write a logo and instructions.

For applications like this, it is convenient to have a matrix that facilitates going from cube space to
camera space and vice-versa. We convert from cube space to camera space with a matrix that rotates around
the vertical axis 45 degrees and then rotates around the horizontal axis by the arctan

(
1/
√

2
)
. Finally, we

push forward each point so the near corner of the cube coincides with the center of the picture plane—the
point {0, 0, 1}:

𝑋𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑋𝑐𝑢𝑏𝑒 𝐼𝑠𝑜 +
[
0 0 1

]
where 𝑋𝑐𝑎𝑚𝑒𝑟𝑎 and 𝑋𝑐𝑢𝑏𝑒 are matrices representing the points of the drawings in different spaces. Each row
corresponds to a data point and the columns are the respective coordinates. 𝐼𝑠𝑜 is a 3 × 3 matrix, where the

Mathematics of Times Square

89



columns are the vectors that transform the cube into camera space:

𝐼𝑠𝑜 =


0.707 0.408 0.577
0.000 0.816 −0.577
−0.707 0.408 0.577


After the matrix multiplication, we push the cube back so that its near corner sits on the picture plane,

achieving the side-view orientation of the cube shown in Figure 2. Once we solve for the location of the
projection of chessboard and the silhouettes on the visible faces of the cube in camera space, we transform
them back into cube space by shifting the axes such that the near corner of the cube is at the origin, and
left-multiplying by the inverse of the rotation matrix, 𝐼𝑠𝑜.

Alternative Approaches

There are tutorials available on YouTube that provide instruction on how to create anamorphic images
(e.g., “Understanding Anamorphic Illusions” by Skill-Lync and “How to Create an Anamorphic Illusion”
by DeepVizion). The simplest approach is perhaps to trace a shadow of an object and then draw the object
within the outline of its shadow, which goes back to at least Leonardo. When viewed from the vantage point
of the light that produced the shadow the illusion will emerge. Another approach involves placing a grid on a
drawing and then making a so-called perspective grid on another sheet of paper and drawing the image on the
perspective grid matching square by square. When viewed from the correct viewpoint the illusion emerges.

For anamorphisms that involve an image projected onto the corner of a room (or some other multi-faceted
surface), one could project the image (or a grid) onto to a corner using a projector (or a shadow of a grid) and
then draw the image using either the projection itself or drawing the image using the projected grid matching
square by square. Alternatively, one could determine how to construct a different perspective grid for each
face and then create a corresponding non distorted grid on the image itself and match square by square.

Another approach involves taking a picture of an object on top of a piece of paper such that in the picture
the object lies within the boundaries of the paper. In this picture, the rectangle of the paper will be distorted.
The next step is to construct a new image using software (e.g., Photoshop or Procreate) that is the size of the
paper in the actual image and import the picture and transform the picture to align the edges of the paper with
the edges of the new image. When printed and viewed from the same viewpoint as the camera the object will
look correct, but when looked at head on the object will look distorted.

The problem of projecting a movie onto a curved surface using multiple projectors is well studied, and
commercial solutions are available (see, for example, [5]). We believe that the core idea is the same: one
starts with a “high-resolution flat movie” and for each pixel on the curved surface one forms a ray between
the pixel and the vantage point and solves for the intersection with a conceptual picture frame and then map it
to the closest corresponding pixel on the conceptual picture frame to determine what color to make the pixel
on the curved screen for each frame of the movie.

A celebrated early anamorphism on a curved surface is the vaulted ceiling of the Church of San Ignazio
Di Loyola in Rome painted by Fra Andrea Pozzo in the late 1600s. According to [6], this painting was
constructed by suspending a taut net just beneath the ceiling. For each intersection of the net, a taut line was
run from the ceiling through the intersection to a fixed point below on the floor of the church and marking the
ceiling. They made a corresponding grid on the preliminary drawing of the painting and mapped the drawing
of the painting to the ceiling square to distorted square.

Matt Pritchard made an animation that creates an illusion of a toy car going through a brick wall, and
[4] describes the award-winning animation. The effect was achieved by filming an actual moving toy car and
a fixed anamorphic drawing of a brick wall.
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Figure 4: Frames from an animation of an iPad perspective box: (a) beginning, (b) middle, and (c) end

The mathematics used by all these approaches are in a sense that same, but the toolboxes are different.
In this paper we are using vector algebra, a computer, and software used by data scientists. The other do
it yourself approaches use rulers, compasses and projectors or software used by graphic designers. For our
taste, using vector algebra is potentially time saving if one wants to animate an anamorphism, work directly
with line drawings and project onto surfaces with many faces.

Second Application

Figure 4 presents three stills from one of our animations that applies a combination of techniques. The
animation relies on three photographs taken from a fixed vantage point of an iPad that is also in a fixed
position. The first photograph is a picture of an iPad with a notebook on top of it. The notebook is removed
and the photograph is transferred to the iPad and then distorted so that the edges of the iPad in the photograph
coincide with the edges of the iPad itself. Without moving either the camera or the iPad, another photograph
is taken (Figure 4(a)). This approach is comparable to the YouTube technique for creating an anamorphism
described in the last section. The key difference is rather than printing out the distorted image, we are viewing
it on the iPad. In Figures 4(b) and 4(c), the notebook has been returned to the iPad and positioned so that
the image of the notebook on the iPad reads as the reflection of the real notebook above it. In the animation,
we draw a skater on the surface of the iPad before the top notebook has appeared and then draw a box below
the iPad. The skater then moves across the faces of the box and returns to her starting point—by which
time the top notebook has appeared, and she appears to slide between the two notebooks. The real notebook
fades away and the drawings are drawn in reverse to disappear and return to the Figure 4(a), after which the
animation starts over in an endless loop (the gallery supplement provides a link to the actual animation).

We determine iPad space using an adaptation of the methodology described in [3]. We locate the 4
corners of the iPad using the locate function in R and then solve for the vanishing point above the iPad. From
our knowledge of the camera used to take the picture, we calculate the angle of view of to be 72 degrees (it was
taken with a zoom lens at a 24mm setting using the 35mm equivalent standard). The angle of view combined
with the vertical coordinate of the vanishing point implies that the slope of the iPad relative to the picture
plane was 0.943. This allows us to compute left-right, up-down and back-front vectors. For convenience, we
choose to place the intersection of the ray from the vantage point through the center of the picture frame with
the iPad at the point {0, 0, 1} in camera space. These vectors, along with the starting point, facilitate placing
the figures in each of the faces of the iPad box and projecting them onto the picture frame.

The lines of the box and the skater are drawn on-top of Figures 4(b) and 4(c) in R using the functions
plot, lines and rasterImage. The second notebook is placed on top of the resulting image with use of the
Magick package once again in 𝑅. We create the illusion of the skater being positioned between the two
notebooks in the Figure 4(c) as follows. We generate an image that is either pure black or pure white and
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is black where we want the second notebook to appear. We think of this image as the mask. We make a
composite image of the image without the notebook and the mask using the image composite function with a
darken operator so that now the pixels for where we want the second notebook to appear are all black and the
other pixels are unchanged. We also take the image with the second notebook and mask-out all but the second
notebook by combining the negative of the mask with the second photograph using the darkening operator
again. We then combine the two images with a lightening operator (take the lighter of the two pixels) to get
the desired effect. We can also blend between the images with the image morph function. For each second
of animation, we output 24 JPEGs with a resolution of 2000 × 2000 from R and then use Python to make
an MP4 video with the cv2 package. Many tools are available to animate and manipulate photographs along
these lines. Our approach is economic because it relies on open-source software, and it facilitates automation
as it is code driven.

Conclusion

In this paper, we show how the same basic mathematics have been employed across centuries to create a
pleasing illusion in different contexts and different scales. Different artists use different mathematical tools
to create such illusions. Here we have shown how to achieve them with vector algebra, which supports
both animations and working on irregular, multi-faceted surfaces. A gallery supplement provides additional
examples with links to animations.

A future challenge would be to make a modern version of a perspective box. While we have seen many
modern examples of anamorphisms, we have not seen something where you look inside a modestly sized box
from two different peepholes and everything looks correct from both. Another challenge would be to make
an anamorphic home movie by projecting a film onto a multi-faceted physical surface–the corner of one’s
living room, for example. Another possibility would be an anamorphic animation utilizing multiple screens
showing different sections of the same image that read correctly from a single viewpoint: one could create
the illusion of a ghost moving about a room that is only visible through the screens in the room. Finally, one
can extend the mathematics to incorporate both shadows and reflections into the imagery.
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