

Mazes and Space-Filling Self-Similar Trees

Marie-Pascale Corcuff

Rennes, France; m-p.c@wanadoo.fr

Abstract

Having defined maze patterns as space-filling trees, a method for generating space-filling self-similar trees from
maze pattern seeds, or tiles, is described, as well as their relationship to space-filling self-similar curves.

Mazes

Mazes and labyrinths are often mixed up, but specialists disagree: in a stricter sense “a labyrinth has one
winding path with many turns and changes of direction” [1] while a maze has multiple path choices. The
path of a labyrinth is unicursal, which means it is impossible to get lost, a maze comports dead ends and
sometimes loops, the right path is not straightforward. We explored earlier the relationship between
labyrinths and space-filling self-similar curves [2]. We now turn our attention to mazes, with a similar
point of view.

Mazes derived from labyrinths, and have evolved today into patterns based upon a grid, where every
cell is attained. There are two things to consider when designing a maze. The first, and most important,
concerns the pattern itself. Does it comprise only dead ends or also loops? A perfect or simply connected
maze contains no loop and is considered as a tree in graph theory [3]. We shall consider such patterns
going forward. The second concerns the location of the starting and arrival points. Any cell of the grid
may be considered as a starting point as well as an arrival point, they do not have to be on the border.
However, as for most popular entertaining or testing mazes, we shall put the starting and arrival points on
the border, making them entry and exit points; moreover, in order to restrain the possibilities, the entry
and exit points will be on corners of a square grid.

One way of generating such a maze pattern consists in drawing a random path starting from one cell
of a square grid till it is impossible to go on, and then do the same starting from any cell already attained,
till every cell of the grid has been reached.

(a) (b) (c)

Figure 1: Maze-generating algorithm result: maze pattern (a), chronological tree (b), solved maze (c).

In Figure 1(a) we see one result of the algorithm in a 25×25 grid, in Figure 1(b) the order in which
the different branches have been produced represented by color and width, and in Figure 1(c) one possible
maze (with entry at top left corner and exit at top right corner) with its unique solution path .

Such patterns on which mazes are defined are trees, and potentially space-filling since every cell of
the grid is attained. That motivates the idea of space-filling self-similar trees on a square grid.

Bridges 2025 Conference Proceedings

69

mailto:sequin@cs.berkeley.edu

Space-Filling Self-Similar Trees

One of the most known space-filling self-similar trees [4], let us call it X-tree, is defined by the following
branching L-system, where ω is the axiom, or initial state:

ω : [X]+[X]+[X]+[X]

F → FF

X → F+[X]+[X]+[X]+[X]

The symbols of the alphabet are interpreted as such:
F : draw a line of unit length; translate to end of line
+ : rotate 90 degrees counterclockwise
[: push position and angle
] : pop position and angle

With an initial position at the center, an initial angle of 45 degrees, and a reduction of the unit length
by half at each step, we obtain the iterations shown in Figure 2.

Figure 2: X-tree, steps 1 to 5.

We can interpret each vertex as a cell in a grid. In order to better see the underlying grid, let us draw
this pattern rotated by 45 degrees (Figure 3).

Figure 3: X-tree on a grid, steps 1 to 5.

We see that the grid is diamond shaped and not square, and that not every cell is attained, though it
does not contradict the space-filling property of this pattern.

The second most known space-filling self-similar tree is commonly named H-tree, and is produced
by the following L-system:

ω : [X]++[X]

X → F+[X]++[X]

Symbols are interpreted as before, except for:

[: push position and angle; divide unit length by √2

] : pop position and angle; multiply unit length by √2

Corcuff

70

Figure 4: H-tree: steps 1, 2, 3, 4, 8.

Let us now try to detect an underlying grid in this case.

Figure 5: Search for an underlying grid in H-tree: steps 1, 2, 3, 4, 8.

We see in Figure 5 an alternately horizontal and vertical regular spacing, but not both at the same
time, though it tends to a grid at the limit.

In order to find how to generate space-filling self-similar trees on a square grid, we shall turn back
to maze patterns.

Generating Space-Filling Self-Similar Trees from Maze Patterns

The idea is to use maze patterns as seeds for an L-system with a process similar to the one described for
generating space-Filling, self-Avoiding, Simple and self-Similar - or FASS - curves [5]. As our aim is to
generate space-Filling self-Similar trees, they will be called FS Trees for short.

We use a first arbitrary 3×3 maze pattern (seed 3×3_1) obtained by the previously described
algorithm and interpret it as an L-system with the edge rewriting method.

Figure 6: Seed 3×3_1 and its schemas for an L-system.

ω : F

F → [TF-YF+YF+YF-YF-YFYF-YFYF] (3×3_1)

T → TTT

Y → YYY

The initial direction is along the y-axis downwards, and the initial position is at the center. The
interpretation of symbols is as following:

F : draw a line from (0,-l) to (0,0) (without translation)

T : translate (-l, -l)

Mazes and Space-Filling Self-Similar Trees

71

Y : translate (0, l)

+ : rotate 90 degrees counterclockwise

- : rotate 90 degrees clockwise

Lines are drawn with a width of 0,8 l. The interpretation of this L-system at step 3 (27×27 grid) is
shown in Figure 7, as well as its treatment as a maze with entry and exit points at left top and right top
corners respectively.

(a) (b) (c)

Figure 7: Results from seed 3×3_1: FS Tree (a), maze and solution path (b), dead ends (c).

A second 3×3 seed leads to a new rule for the edge replacement, and its interpretation (Figure 9).

Figure 8: Seed 3×3_2.

F → [TF-YF+YF[YF+YF+YF]-YF[+YF]-YF] (3×3_2)

(a) (b) (c)

Figure 9: Results from seed 3×3_2: FS Tree (a), maze and solving path (b), dead ends (c).

We can also interpret this process as a recursive tiling, with paths between some adjacent tiles, as
seen in Figure 10; colors correspond to the orientations of the tiles.

Figure 10: Recursive tiling with seed 3×3_1.

How many of these seeds, or tiles, are there on a 3×3 grid? According to the On-Line Encyclopedia
of Integer Sequences, there are 192 perfect mazes on a grid of 3×3 cells [6], which produce as many
different FS Trees. In comparison to the search for FASS curves this method is much easier because any

Corcuff

72

pattern is usable, the only constraint in writing the L-system is that each pattern must be linked to the
previous one. And the same pattern in a different position will yield a different FS tree.

As there are too many 3×3 seeds to thoroughly explore, let us turn to 2×2 seeds. The only shape that
fits is a U shape, but as we can use any position, this leads to four 2×2 seeds:

Figure 11: 2×2 seeds: 2×2_1, 2×2_2, 2×2_3, 2×2_4.

Those seeds generate the following rewriting rules:

F → [TFYF-YF-YF] (2×2_1)

F → [TF-YF+YF+YF] (2×2_2)

F → [TF[YF]-YF+YF] (2×2_3)

F → [TF[-YF]YF-YF] (2×2_4)

In each case we have:

T → TT

Y → YY

Those seeds produce FS Trees shown in Figure 10 at step 5 (32×32 grid), with their corresponding
solved mazes.

(a) (b) (c) (d)

Figure 12: FS Trees and solved mazes, with seeds: 2×2_1 (a), 2×2_2 (b), 2×2_3 (c), 2×2_4 (d).

Let us now focus on the self-similarity of those patterns, with 2×2 seeds (Figures 13-16).

Figure 13: 2×2_1 FS Tree, steps 1 to 5.

Mazes and Space-Filling Self-Similar Trees

73

Figure 14: 2×2_2 FS Tree, steps 1 to 5.

Figure 15: 2×2_3FS Tree, steps 1 to 5.

Figure 16: 2×2_4 FS Tree, steps 1 to 5.

Lines are drawn with a width of 0,5 l. The unit length l is equal to the initial length l_init divided by
2n for each step n. Color changes periodically every 4 F in order to emphasize the basic pattern, or seed.

We can apply the same treatment to FS Trees with 3×3 seeds, the two we have already described,
plus two of a particular interest, an S shape and a spiral (Figures 17-20):

Figure 17: 3×3_1 FS Tree, steps 1 to 4.

Figure 18: 3×3_2 FS Tree, steps 1 to 4.

Corcuff

74

Figure 19: 3×3_3 FS Tree, steps 1 to 4.

Figure 20: 3×3_4 FS Tree, steps 1 to 4.

The color change has been applied every 9 F, and l = l_init / 3n.

Let us now look at these patterns a little differently. The U shape in Figure 9 looks a lot like the first
step in the construction of the Hilbert curve, for which the rewriting rules are commonly of the node
replacement kind, as following, schematized and interpreted in Figure 21.

ω : R

L → +RF-LFL-FR+

R → -LF+RFR+FL-

Figure 21: Hilbert curve: schema of node rewriting rule; steps 1 to 5.

This gives the idea of a new way to write an L-system for the 2×2_1 FS Tree, with the following
node rewriting rule, schematized and interpreted in Figure 22.

ω : U

U → [U]YF[U]Y+YF[U]Y+YF[U]

Figure 22: 2×2_1 FS Tree: schema of node rewriting rule; steps 1 to 5.

Mazes and Space-Filling Self-Similar Trees

75

In each case, the initial position is at the top left corner; the initial direction is the x-axis for the
Hilbert curve, the y-axis for the 2×2_1 FS Tree. F is interpreted as a line and a translation to the end of
the line. The unit length must be divided by dn = 1+2 dn-1 at each step n, with d0 = 0. The width of the lines
is constant. Y represents a jump, or a translation without drawing, which has to be adequately tuned for
each step according to a rule similar to the one for the unit length.

Finally, we can develop this construction in 3D, with for instance the following rewriting rule:

A → [A]YF[A]Y-YF[A]Y-YF[A]Y#YF[A]Y#YF[A]Y-YF[A]Y-YF[A] (2×2×2_1)

- : rotate 90 degrees clockwise around z-axis

: rotate 90 degrees clockwise around x-axis

Figure 23: 3D 2×2×2_1 FS Tree, steps 1 to 4.

Summary and Conclusions

Instigated by a curiosity for mazes, those successors of the labyrinths much more adequate in inducing a
feeling of disorientation, this research lead to a method for producing space-filling self-similar trees or FS
Trees from seeds which are perfect mazes on a grid. While there are only 4 such seeds on a 2×2 grid their
number for larger grids increases rapidly, which accounts for a huge number of different FS Trees. This
procedure may be automatized, the rewriting rule being directly created by the maze-generating
algorithm.

References

[1] R. Burrows. “Labyrinths: Mysteries and Methods.” Bridges Conference Proceedings, On Line, Aug.
1-5, 2020, pp. 345-352. https://archive.bridgesmathart.org/2020/bridges2020-345.pdf

[2] M.-P. Corcuff. “Labyrinths and Space-Filling Curves, Spirals and Tessellations: Topological and
Geometrical Implications of Cartesian to Polar Transformations.” Bridges Conference Proceedings,
Richmond, Virginia, USA, Aug. 1-5, 2024, pp. 107-114.
https://archive.bridgesmathart.org/2024/bridges2024-107.pdf

[3] Wikipedia. https://en.wikipedia.org/wiki/Maze-solving_algorithm
[4] J. Kuffner and S. M. LaValle. “Space-Filling Trees.”, Tech. Report, CMU-RI-TR-09-47, Robotics

Institute, Carnegie Mellon University, December, 2009. https://lavalle.pl/papers/KufLav09.pdf
[5] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, 1990.
[6] The On-Line Encyclopedia of Integer Sequences. https://oeis.org/A007341

Corcuff

76

https://oeis.org/A007341
https://lavalle.pl/papers/KufLav09.pdf
https://en.wikipedia.org/wiki/Maze-solving_algorithm
https://archive.bridgesmathart.org/2024/bridges2024-107.pdf
https://archive.bridgesmathart.org/2020/bridges2020-345.pdf

	Abstract
	Mazes
	Space-Filling Self-Similar Trees
	Generating Space-Filling Self-Similar Trees from Maze Patterns
	Summary and Conclusions
	References

