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Abstract
A new method for building icosahedral quasicrystal structures out of paper is explored and described. Three-
dimensional quasicrystal patterns arranged in spherical formations can be modeled using sets of folded paper strips
that are joined into loops. Each strip consists of a sequence of golden rhombi, separated by parallel mountain and
valley folds that may be pre-scored. The loops overlap and are connected by tape such that corresponding folds in
different strips reinforce one another to form a rigid structure. These sphere-shaped polyhedra are nonconvex but
share similarities with zonohedra. We demonstrate how the strips appear both in their two-dimensional unrolled state
and in their completed construction. Interesting patterns can be observed by comparing icosahedrally symmetric
designs with those that are less regular. These differences are related to the underlying choice of tiling units that are
used to generate the packing and resulting surface design.

Introduction

The icosahedral packings of quasicrystals can be seen as the 3D equivalent of the 2D aperiodic Penrose
tiling. We may construct 3D packings with two rhombohedral tiles (Figure 1, left) that fill space without any
gaps. These tiles are the acute rhombohedron 𝐴6 and the oblate rhombohedron 𝑂6. Steinhardt et al. [3]
[5] proposed a theoretical description for quasicrystal construction that consists of 4 distinct tiles (Figure 1,
right) rather than the two rhombohedra. All are golden isozonohedra. The acute rhombohedron 𝐴6 is one of
the four tiles. The other three tiles are the rhombic (Bilinksi) dodecahedron 𝐵12, the rhombic icosahedron
𝐹20, and the rhombic triacontahedron 𝐾30. Note that the three larger zonohedra may be also subdivided into
packings of only 𝐴6 and 𝑂6 tiles.

Figure 1: The five golden isozonohedra. The first two, 𝑂6 and 𝐴6, are the two types of rhombohedra that
form rhombohedral space-filling quasicrystal packings. The last four, including 𝐴6, are the four

zonohedra that may also form space-filling quasicrystal packings.

Although quasicrystals have been studied extensively for decades, there does not yet exist an accessible way
to generate and visualize these structures. In 2023, I submitted a video [1] to the Bridges Short Film Festival
demonstrating 3D quasicrystal construction using a substitution algorithm by Alexey E. Madison [4]. Around
the same time, I was also implementing that algorithm as a flexible software tool for Grasshopper 3D that
could easily construct these packings to fill any given boundary volume. This tool both enabled the generation
of the animations in the film, and also provided a way to further explore and examine these structures in a
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digital environment, thus allowing for the present study. For this paper, we focus specifically on spherical
configurations, treating the outer boundary of a quasicrystal packing as a single closed polyhedron.

Quasicrystal Spheres

We begin by defining a set of nonconvex polyhedra generated from quasicrystal packings that we call
quasicrystal spheres. Using the four zonohedral tiles, there exist exactly three complete packings with a
single center of icosahedral point symmetry that completely fill 3D Euclidean space (Steinhardt [5] and
Madison [4]). Here we choose to focus on one of these options, which features a single 𝐾30 tile at the center
of the pattern. Using this same center point, we generate a sphere of any size and trim the infinite tiling by
this sphere, taking only the tiles whose centerpoints fall within the spherical boundary. Next, we abandon
the configuration of the inner tiles to focus only on the outer surface formed by the exposed faces of the
outermost tiles. Together, these faces join to form a single non-convex polyhedron, or quasicrystal sphere.
Examples of these are shown in Figure 2.

Despite their nonconvexity, these polyhedra have several regular properties. Their faces are all congruent
golden rhombi used in all faces of the original 3D unit tiles. They exhibit icosahedral symmetry, ensured
by the icosahedral symmetry of the underlying tiling (and the spherical boundary, which maintains that
symmetry). All edges of the quasicrystal spheres are positioned in one of six possible orientation directions,
corresponding with the six 5-fold rotational axes of the icosahedron. This property is shared by the rhombic
triacontahedron (the 𝐾30 tile). Quasicrystal spheres share similar properties with zonohedra, in that their
faces can be grouped into encircling bands of faces sharing a common edge direction.

By starting at an arbitrary face and picking one of its edges, then moving successively through neighbor-
ing faces sharing that edge direction, we can visually observe that we will always follow a continuous band
that returns to the starting face. Every face corresponds to a crossing between two distinct bands. Unlike
zonohedra, however, there are more than one band of faces for any given edge direction.

Paper Strip Analysis and Construction

While both 3D printing and Zometool [6] sets exist as available options for constructing physical models of
quasicrystals, the zonohedra-like properties of quasicrystal spheres offer a new possible construction method
using continuous strips of paper or other flat material.

George Hart’s study on zonohedrification [2] inspired a simple algorithmic method for extracting the
groups of bands on any given quasicrystal sphere corresponding to a single edge direction (what would be
a single band, or zone, for a true zonohedron). We start by choosing one of the six known edge direction
vectors. Next, for each face, we compare the normal vector with this edge direction vector. If the dot product
is zero, we know that this face belongs to a strip (or group of strips) where all interior edges are in the chosen
direction.

Figure 2: A selection of quasicrystal spheres rendered in partial transparency. On each sphere, one zone
group, consisting of parallel edges and bands, is highlighted in pink. All other faces are blue.
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We apply this method for arbitrarily large quasicrystal spheres and observe how the size and number of strips
increase, while the continuity of the strip loops are maintained (Figure 2). The number of these bands is
always odd. Thus, every zone group contains a primary central band that wraps around the middle of the
polyhedra, with pairs of smaller bands wrapping parallel to the central band on either side.

Given that the quasicrystal spheres, as we have considered them so far, exhibit icosahedral symmetry,
each of the six groups of bands are identical. This makes it easy to construct the 2D cut-and-score sheets for
the construction of the paper model. First, we determine a single edge direction group and unroll the bands
of surfaces, determining the necessary mountain and valley folds in the process. We then take exactly six
copies of the defined bands. We may also simplify the model by only choosing specific strips per each group,
rather than all strips, leaving a pattern of holes in the built model (Figure 4) where two missing strips would
have overlapped. This also leaves some single surfaces not belonging to an overlapping pair.

Breaking the Symmetry

We return to our initial definition of quasicrystal spheres and make one modification. Any packing made
of the 4 zonohedral unit cells (Figure 1, right) can be further decomposed into packings consisting of only
two different rhombohedra (Figure 1, left). Unlike the 4-tile packings however, replacing the zonohedral
tiles with only rhombohedra requires breaking the icosahedral symmetry that neatly existed in our earlier
definition. Given this modified tiling, we can generate modified quasicrystal sphere polyhedra which can be
decomposed into strips using the same method. In this less symmetric version, however, the unrolled strips
can no longer be separated into six identical groups. Instead, each edge direction group may be unique.

It appears that in many cases, when we compare the unrolled 2D pattern for a quasicrystal sphere and
its corresponding asymmetric modification, we may have nearly the same pattern, the main difference being
that the mountain and valley folds change. Figure 3 demonstrates an example for two similar spheres, one
with icosahedral symmetry and the other without, each containing three strips per zone group, for a total of
18 strips per sphere. Red and blue lines represent mountain and valley folds, respectively. In this case, the
six long central strips for each zone group in both spheres have identical zig-zag cut outlines (in black).

(a) (b)

Figure 3: Examples of cut-and-score guide sheets for preparing the paper strips for a pair of similar
quasicrystal spheres: (a) icosahedrally symmetric sphere (b) modified asymmetric sphere.
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(a) (b)

Figure 4: Photographs of constructed paper models, each using only the six primary central strips from the
top section in Figure 3: (a) icosahedrally symmetric sphere, each band in a different color,

(b) modified asymmetric sphere, challenging the viewer to follow the bands without the colors.

Conclusion

We have demonstrated a new method for building icosahedral quasicrystal sphere structures out of folded
paper strips. Only a few simple examples are shown, but the same method can be applied to construct
spheres of any size. This study is merely one small observation in the fascinating world of three-dimensional
quasicrystals, and the explorations are surely to be continued.
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