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Abstract

In this article, we explore the multiplicative structure of the set of integers modulo N via string design. Furthermore,
we introduce novel visualizations of these structures using induced magnetic fields corresponding to string designs.

Introduction

String art has a long history as both an artistic medium and a tool for exploring mathematical concepts. One
such concepts is the structure of integers modulo N. Let N > 0 be an integer. Consider a circle C whose
circumference is divided into N equal arcs. We refer to the points that separate adjacent arcs as vertices.
Label the vertices by 0,1,2,--- ,N — 1. Fix a positive integer a in {1,--- ,N — 1}. An (N, a) residue
design [2, 3] is obtained by drawing a straight edge between each vertex i and its a multiple ia, modulo
N. This construction — also known as modular multiplication table — is well-known due to the interesting
designs it creates including the “cardioid” and more generally “the n-cusp epicycloid”.

We used the idea behind residue designs to give a visual exploration of multiplicative structure in Zy via
string art. We also introduce the technique of replacing strings with wires and explore the imagery generated
by the induced magnetic field when current passes through wires. This idea initially was an attempt towards
fully reflecting the multiplicative structure of Zy by assigning weights on the strings. We achieved imposing
a binary weight by controlling the direction of the current passing through the wires. The imagery resulting
from visualizing the magnetic filed induced by the string designs is fascinating from visual point of view and,
in some instance, informative about the underlying mathematics. One of our original motivations for this
work was to explore the possibility of physical realizations of these fields using iron filings suspended above
custom-built wire arrays. That goal is not fully realized yet and the current paper showcases the magnetic
residue designs through modeling the magnetic field.

Generalized Residue Designs

In this section, we assume the reader is familiar with undergraduate abstract algebra and number theory at
the level found in [1]. Let Uy denote the group of multiplicatively invertible elements or units in Zy. These
are precisely those integers in Zy co-prime to N. Let’s pick a in Zy such that gcd(a, N) = 1. This will
guarantee that a is a unit modulo N and hence is in Uy . There are ¢(N) elements in Uy, where ¢ is the
Euler’s totient function. Hence, there are ¢(N) possible a to choose. Construct the following sequence
lsa—d*—>d - —>d =1 (1)
All the computations are modulo N. This way each term corresponds to a vertex on the circle C. We continue
the process until we get a” = 1. Connect the vertices labeled by consequent terms of the above sequence via
a straight edge. The result will be a design to which we refer as a Generalized Residue Design (see Figure 1).
Note that the order r of a is a divisor of the order of Uy and hence finite. This guarantees that the sequence
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ends and we come back where we started. The terms in the sequence (1) comprise the subgroup (a) generated
by a in Uy . Hence the Generalized Residue Design depicts a subgroup in Uy . If Uy is cyclic and the order
of a is ¢(N), then the sequence (1) will cover all the vertices in Up . By the Primitive Root Theorem, this can
happen only if N = 1,2, 4, p¥ or 2p¥, for an odd prime p and a positive integer k. The significance of this
special case becomes more apparent when one attempts to create the design with a string. If a generates Uy,
the design can be generated with a single string that passes through all the vertices labelled with elements of
Uy . All the other vertices are zero divisors. Figure l1a shows this design for N = 52,5° and 5* with a = 2.
Here (a) is constructed by the red string. The green shows the sequence generated by the zero divisor 5.

(@) N =52 5% and 5* witha = 2. bYN=97,a=5a=17, anda = 10.

Figure 1: Generalized residue designs.

A rather special case of cyclic Uy is the design obtained when N is a prime number and a is a primitive
root mod N. In this case, our generalized residue design overlaps with the residue design discussed in [2, 3].
In general, once we have a generator a for a cyclic group of order M, we can find other generators. Indeed,
a’ also generates (a) if and only if gcd(M, j) = 1. Interestingly, the designs induced by different generators
are different. That is, the residue design picks up information about the pair (a, {a)) as opposed to just (a).
For example, 5, 7 and 10 are all generators for Uy; generating different designs as showed in Figure 1b.

Even if a generates a proper subgroup of Uy, the designs are aesthetically rich, especially when (a) in
Upn has a small index. That means ¢(rN) is small, where r is the order of a. Let us further explore the case
where a generates a small index subgroup. Let’s think about N = 59 and a = 5. The order of 5 in Usg is 29.
Note that ¢(59) = 58 and hence (5) in Usg has index 2. Figure 2a illustrates (5). The rest of the vertices not
covered in (5) are in the only other coset. We can generate a design that covers the other coset by picking
any vertex b ¢ (5), and construct the sequence

b—ba—ba’> —>ba’— - —>ba" =b )

In our example, we can take b = 2, and generate a design via sequence (2). Figure 2b illustrates the coset
2(5). By Lagrange’s theorem, the cosets of {(a) partition Uy. So superimposing them, we get a design that
covers all the vertices as shown in Figure 2c. To generate this coset decomposition with strings, we will need
two strings, one for each coset as shown in Figure 2d.

(a) (b) (c)

Figure 2: Coset partition of {a) in Uy for N = 59 and a = 5, (a) the subgroup (5), (b) the coset 2{5),
(c) cosets partition Usg (d) string art based on the coset partition.

The design in Figure 2c and 2d can also be obtained through the multiplication table (59, 5). However,
that method does not reveal much about the number of cosets of (5) in Usg. Unless we use an external
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identifier to keep track of the coset structure, the coset information flows in the process only and not in the
final design. For instance, the identifier could be the color of the strings chosen in Figure 2. In the next
section, we replace the strings with wires and use the direction of electric current passing through wires to
identify the cosets.

Electromagnetic Field Analysis

The Biot-Savart Law, by Jean-Baptiste Biot and Félix Savart, quantitatively calculates the magnetic field B
that an electric current I flowing through a wire generates at the position r in the 3D space, linking the electric

current’s geometry and magnitude to the magnetic field’s characteristics B(r) = 5—2 c L ﬁ‘{;|x3r/

The Biot-Savart Law, crucial for deriving the magnetic field (B) around a conductor with steady current
(1), employs a line integral over the conductor’s path. Considering the differential element (df) and its
position relative to the observation point, this law integrates the contributions from each segment, using the
magnetic constant (ug), to relate electric current geometry to the magnetic field’s distribution, emphasizing
the impact of current flow on field creation. To apply the Biot-Savart Law, we utilize line integration across
the configurations of wires in our generalized residue design. This method involves integrating over the
current-carrying wire segments to compute the magnetic field at various points in space by producing a
3D mesh around the wires. Through this method, we observe the electromagnetic patterns emerging from
different residue design scenarios. Aesthetically speaking, this methods gives a novel way of visualizing
multiplicative group Uy . To showcase this, we generated the field induced by the design depicted Figure 1b,
where we generated Ug; with three different generators 5, 7, and 10. This is shown in Figure 3. Each row
represent the quiver (left) and the contour (right) of the induced field at a distances d from the design.

Figure 3: Quiver and contour induced by Uy; as generated by 5, 7, and 10 at two distances d and d;.

We would like to explore whether this new visualization holds visual information connected to the
patterns generated by the number of cosets inside Uy . To explore, we simulated the magnetic field induced
by the design obtained from (5) in Usg, and its coset partitioning of Usy and plotted the quiver and contour
of the field generated on a plane parallel to the planar design located at distance d from it in Figure 4. The
first column in quiver and contour shows (5) in Usg. We explored the effect of the direction of the current
in identifying the different cosets. First, we tried to run a current with the same direction through both (5)
and 2(5) (the second column in the quiver and contour in Figure 4), and then we switched the direction of
the current between the two cosets (the third column in the quiver and contour in Figure 4). We were able to
generate a variety of patterns as the distance d from the design changes. Rows in Figure 4 correspond to a
reasonably close distance d; and a farther distance d,. We noticed that when using the opposite direction for
the current, the resulting pattern creates a duality that seems to be connected to the index of (5) in Uso.

Motivated by the promising patterns for Usg/(5), we decided to explore another design that admits
three distinct cosets: cosets of (7) in U73. To make the trivial coset, we generated the sequence (1) with
a = 7. Then to generate the second coset, we chose b; to be the smallest label on the circle that is not in
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Figure 4: Quiver (left) and contour (right) induced by the design (5) in Usg at d; and d.

{a,a’,a>,--- ,a" = 1}, and generate sequence (2) with b = b;. Note that we are making a specific choice

here that affects the design. We repeat the process by choosing the next value for b to be the smallest label
not covered in {a,a? a3, ---,a" = 1} U {ba,ba*,ba’,--- ,ba” = b}. A current is labeled with +1 if it
follows the direction of sequence (1) or (2), and —1 if it is the opposite direction. We tried the following
labeling of the cosets from left to right: (1,1, 1), (1,—1, 1) and (-1, —1, 1). This is shown in Figure 5, the left
most column is (7) followed by the aforementioned labeling of the coset decomposition. Rows correspond
to a reasonably close distance d; and a further distance d>. The index seems most apparent in (—1,—1, 1)
labeling. To complement the static plots presented in this work, we include a series of supplementary videos
that show the magnetic field evolving in a plane parallel to the wire configuration at increasing distances d.

Figure 5: Quiver (left) and contour (right) induced by the design (7) in U3 at d; and d5.

Conclusion

The electromagnetic field analysis gives a novel method of visualizing the multiplicative structure of Zy . In
the examples we explored, the index of the subgroup generated by our choice of the generator seem to be
visible in the pasterns. Beyond the mathematical significance, these visual construction carry a spatial rhythm,
resembling the layered symmetry and curvature found in physical string art. Moreover, the construction offers
a natural three dimensional extension of the designs via the magnetic fields they generate.

References

[1] Joseph A. Gallian. Contemporary abstract algebra, Ninth edition ed. Boston, MA: Cengage Learning.
[2] P. Locke. Residue Designs. 1972. The Mathematics Teacher, vol. 65, no. 3, 1972, pp. 260-63.

[3] D. Richeson. Residue Designs, String Art, and Number Theory, Bridges 2023 Conference
Proceedings, Halifax, Nova Scotia, Aug. 9-13, 2023, pp. 365-368.

550



