Supplement: Appendix to Artsy Pseudo-Hamiltonian Tours

Published 2024 at https://www.bridgesmathart.org/ by Karl Schaffer and Mitchell J. Nathan

In this Appendix prepared by the first author we first give an algebraic solution to the problem of the $\{6 /(3,2)\}$ and $\{6 /(4,3)$ passing patterns, and then establish several theorems that characterize and count $\left\{n /\left(a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right)\right\}$ designs and show their connection to a variation on Hamiltonian tours of cycles C_{n}, as explained in the primary Bridges paper.

$\{6 /(3,2)\}$ and $\{6 /(4,3)$ passing patterns problem

We need to calculate separately for even and odd numbers of passes. If the total number of passes is x, then for ease of calculation, we will let y be the number of passes of the first weights in each sequence, 3 and 4 . If x is even, then the number of weight 3 and weight 2 blue ball passes and the number of weight 4 and weight 3 red ball passes are each $y=\frac{x}{2}$. If the total number of passes x is odd, as in the solution shown in Figure 2(b) in the primary Bridges paper, then the number of weight 3 blue ball passes and the number of weight 4 red ball passes are each $y=\frac{x+1}{2}$, while the number of weight 2 blue ball passes and the number of weight 3 red ball passes are each $y-1=\frac{x-1}{2}$.

For even numbers of passes we solve $1+3 y+2 y \equiv 2+4 y+3 y(\bmod 6)$. This simplifies to $4 y \equiv 1$ $(\bmod 6)$ which has no solutions since $2=\operatorname{gcd}(4,6)$ is not a divisor of 1 , and the balls never meet on an even pass. For odd numbers of passes we solve $1+3 y+2(y-1) \equiv 2+4 y+3(y-1)(\bmod 6)$. This simplifies to $4 y \equiv 0(\bmod 6)$, with solutions $y \equiv 0$ or $3(\bmod 6)$ which can be represented by $y=6 k$ or $6 k+3$ for k any non-negative integer. Since $y=\frac{x+1}{2}$, solving for x gives $x=2 y-1=12 k-1$ or $12 k+5$, shown in Table 2 in the primary Bridges paper by the shaded blue columns.

Characterizing and counting $\left\{n /\left(a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right)\right\}$ designs

With respect to the n vertices of the cycle C_{n} let m be an integer in the set $\{1,2,3, \ldots, n\}$ and let $s_{i} \equiv a_{1}+a_{2}$ $+a_{3}+\ldots+a_{i}(\bmod n)$ for $i=1,2,3, \ldots, m$. The design $\left.\left\{n / A_{m}\right)\right\}=\left\{n /\left(a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right)\right\}$ is the directed multigraph (typically) beginning at vertex 0 with edges successively of weight $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$, continuing with another sequence of edges of weight $a_{1}, a_{2}, a_{3}, \ldots, a_{m}$ until an a_{m} edge first terminates at 0 . This will first occur when the sum of the edge weights in the overall sequence reaches $\operatorname{lcm}\left(n, s_{m}\right)$, the least common multiple of n and s_{m}, forming a circuit through a subset of the vertices of C_{n}. If the design $\left.\left\{n / A_{m}\right)\right\}$ includes each vertex of C_{n} exactly k times we say that it is also an ($a_{1}, a_{2}, a_{3}, \ldots, a_{m}$)-step k-Hamiltonian tour of C_{n}. If $k=1$ and each vertex of C_{n} appears once then the design may be called an ($a_{1}, a_{2}, a_{3}, \ldots, a_{m}$)-step Hamiltonian tour of C_{n}. For convenience we define $S_{m}=\left(s_{1}, s_{2}, s_{3}, \ldots, s_{m}\right)$, and $d=\operatorname{gcd}\left(n, s_{m}\right)$. For $0 \leq k<$ d define $e_{k}=$ the number of elements of S_{m} that are congruent to $k, \bmod d$, and let $E=\left(e_{0}, e_{1}, e_{2}, \ldots, e_{d-1}\right)$. We will use E in the following discussion. See the examples in Figure A.1.

The edges of $\left\{n /\left(a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right)\right\}$ are as follows, where it is convenient to reduce to elements of the set of least residues, $\bmod n,\{0,1,2, \ldots, n-1\}$, we have:
$\left(0, s_{1}\right),\left(s_{1}, s_{2}\right), \ldots,\left(s_{m-1}, s_{m}\right), \ldots$,
$\left(s_{m}, s_{m}+s_{1}\right),\left(s_{m}+s_{1}, s_{m}+s_{2}\right), \ldots,\left(s_{m}+s_{m-1}, 2 s_{m}\right), \ldots$,
$\left(\left(\frac{n}{d}-1\right) s_{m},\left(\frac{n}{d}-1\right) s_{m}+s_{1}\right),\left(\left(\frac{n}{d}-1\right) s_{m}+s_{1},\left(\left(\frac{n}{d}-1\right) s_{m}+s_{2}\right), \ldots,\left(\left(\frac{n}{d}-1\right) s_{m}+s_{m-1},\left(\frac{n}{d}\right) s_{m}=1 \mathrm{~cm}\left(n, s_{m}\right)\right)\right.$
Note that in a multigraph two vertices may be joined by more than one edge and some $\left\{n / A_{m}\right\}$ designs will include multiple edges rather than have the design traverse the same edge more than once.

Figures A. 1 (a) and (b) show examples $\{12 /(1,4,1,2)\}$ and $\{8 /(2,4)\}$. Note that in $\{12 /(1,4,1,2)\}$ the vertices 3,7 , and 11 , which are each congruent to 3 , mod 4 , have degree 0 ; the vertices $0,2,4,6,8$, and 10 , which are congruent to 0 or $2, \bmod 4$, have degree 2 ; and the vertices 1,5 , and 9 , which are congruent to 1 , mod 4 , have degree 4 . In $\{8 /(2,4)\}$ even vertices have degree four, odd vertices have degree zero, and multiple edges join pairs of even vertices. The Figure A.1(b) design duplicates that of a string loop tetrahedron held by four hands [4].

(a)

$\{8 /(2,4)\}$
$S_{2}=\{2,6\} \equiv\{0,0\} \bmod (2)$
$d=2, E=\{2,0\}$
(b)

$\{12 /(3,7)\}$
$S_{\mathbf{2}}=\{\mathbf{3}, \mathbf{1 0}\} \equiv\{1,0\} \bmod (\mathbf{2})$
$d=2, E=\{1,1\}$
(c)

$\{5 /(1,1)\}$

$$
\begin{gathered}
S_{2}=\{1,2\} \equiv\{0,0\} \bmod (1) \\
d=1, E=\{2\}
\end{gathered}
$$

(f)
(e)

Figure A.1: (a) $\{12 /(1,4,1,2)$. (b) $\{8 /(2,4)$. (c) $\{12 /(3,7)\}$. (d) $\{12 /(3,6,1,10)\}$. (e) $\{12 /(1,5,1,3)\}$. (f) $\{5 /(1,1)\}$.
Since n is divisible by d the vertex labels of C_{n}, which are the elements $\{0,1,2, \ldots, n-1\}$ of $Z / n Z$, are naturally partitioned into equal size subsets congruent, $\bmod d$, to one of either $0,1,2, \ldots$, or $d-1$. For example, for $\{12 /(1,4,1,2)\}, d=4$ and those four subsets are $\{0,4,8\},\{1,5,9\},\{2,6,10\}$, and $\{3,7,11\}$. Since $S_{4}=(1,5,6,8) \equiv(1,1,2,0),(\bmod 4)$, therefore $E=(1,2,1,0)$. For $\{8 /(2,4)\}$ we have $d=2, S_{2}=(2,6) \equiv(0,0)$, $(\bmod 2)$, therefore and $E=(2,0)$.

We summarize parameters for $\left\{n / A_{m}\right\}$ in
Theorem A.1. The design $\left\{n / A_{m}\right\}$ on the vertices of C_{n} is a circuit with a total of $\frac{n m}{d}$ edges and in which $\frac{n m}{d}$ is also the number of times vertices appear in $\left\{n / A_{m}\right\}$. The degree of each vertex that is congruent to k, $\bmod d$, is $2 e_{k}$. The total number of edges of weight a_{i} is $\frac{n}{d}$ times the number of times that value a_{i} appears in A_{m}.

Proof. The number of times the sequence A_{m} appears in the construction of $\left\{n / A_{m}\right\}$ is $\frac{n}{d}$ and each such occurrence of A_{m} gives rise to m edges so $\left\{n / A_{m}\right\}$ has a total of $\frac{n m}{d}$ edges. Each time that each of the m values a_{i} appears in A_{m} gives rise to $\frac{n}{d}$ edges of weight a_{i} in $\left\{n / A_{m}\right\}$.

We need to take care to understand whether vertices and edges are duplicated within the design or whether they appear uniquely. To calculate the degree of each vertex in $\left\{n / A_{m}\right\}$ we need to show that every value s_{i} of S_{m} generates exactly one pass of the circuit through each of the $\frac{n}{d}$ vertices of C_{n} that are congruent to s_{i}, $\bmod d$. The multiples of $s_{m},\left\{s_{m}, 2 s_{m}, 3 s_{m}, \ldots,\left(\frac{n}{d}\right) s_{m} \equiv 0(\bmod n)\right\}$, must be distinct, $\bmod n$, since if $x s_{m} \equiv$ $y s_{m}(\bmod n)$ for $1 \leq x<y \leq\left(\frac{n}{d}\right)$ then $(y-x) s_{m} \equiv 0(\bmod n)$ and $(y-x)<\left(\frac{n}{d}\right)$ contradicting the fact that $\left(\frac{n}{d}\right) s_{m}$ is the least common multiple of n and s_{m}. Since $d=\operatorname{gcd}\left(n, s_{m}\right)$, this set of $\left(\frac{n}{d}\right)$ multiples of s_{m} is identical to the set $\left\{d, 2 d, 3 d, \ldots,\left(\frac{n}{d}\right) d=n \equiv 0(\bmod n)\right\}$ of $\left(\frac{n}{d}\right)$ distinct multiples of $d, \bmod n$. Similarly for any $1 \leq j \leq d$ and $0 \leq x<y \leq\left(\frac{n}{d}\right)$, we must have that $x s_{m}+j$ and $y s_{m}+j$ are distinct $\bmod n$. For any $1 \leq i$ $\leq j \leq d$ if $x s_{m}+i \equiv y s_{m}+j(\bmod n)$, then $(y-x) s_{m}+(j-i)=k n$ for some k. Reducing this equation, $\bmod d$, since s_{m} and n are both multiples of d, gives $(y-x) \cdot 0+(j-i) \equiv k \cdot 0, \bmod d$, which would imply $i=j$, so $x s_{m}$ $+i$ and $y s_{m}+j$ must be distinct. Each value s_{i} in S_{m} is of the form $x s_{m}+k$ for $0 \leq k \leq d-1$, as described above, and is congruent to $k, \bmod d$. In the $\left(\frac{n}{d}\right)$ occurrences of S_{m} in $\left\{n / A_{m}\right\}$ that s_{i} causes the circuit to pass through each vertex congruent to $k, \bmod d$, exactly once. Therefore, since e_{k} represents the number of times values s_{i} of S_{m} are congruent to k, mod d, e_{k} also represents the number of times $\left\{n / A_{m}\right\}$ passes through each vertex of C_{n} congruent to $k, \bmod d$. So any vertex congruent to k, $\bmod d$, will have degree $2 e_{k}$ in $\left\{n / A_{m}\right\}$.

Corollary A.1.1. $\left\{n / A_{m}\right\}$ forms an A_{m}-step $\frac{m}{d}$-Hamiltonian tour of the vertices of C_{n} if and only if all values of $E=\left(e_{0}, e_{1}, e_{2}, \ldots, e_{d-1}\right)$ are identical.

Proof. By theorem 1, $\frac{n m}{d}$ is the total number of times the circuit passes through vertices. If all the values of $E=\left(e_{0}, e_{1}, e_{2}, \ldots, e_{d-1}\right)$ are the same then also all vertex degrees will be the same, and the degree of each vertex will be $2 \frac{1}{n} \frac{n m}{d}=\frac{2 m}{d}$, and $\left\{n / A_{m}\right\}$ forms an A_{m}-step $\frac{m}{d}$-Hamiltonian tour.

Suppose $\left\{n / A_{m}\right\}$ forms an A_{m}-step $\frac{m}{d}$-Hamiltonian tour of the vertices of C_{n}. Then the degree of each vertex congruent to $k, \bmod d$, will be $\frac{2 m}{d}=2 e_{k}$, so $e_{k}=\frac{m}{d}$ for all k since all vertices have the same degree in an A_{m}-step $\frac{m}{d}$-Hamiltonian tour.

Example. Figure A.1(e) shows $\{12 /(1,5,1,3)\}$ for which $d=2$. Edges of weight 1 appear $2 \cdot \frac{12}{2}=12$ times, and all vertices are degree $2 \cdot \frac{4}{2}=4$. Figure A.1(f) shows $\{5 /(1,1)\}$ for which $d=1$. We may consider that every integer is congruent to 0 , mod 1 since division by 1 leaves remainder 0 in all cases. All vertices are of degree $2 \cdot \frac{2}{1}=4$. Since the edges alternate in color blue, red, blue, red, \ldots, and $n=5$ is odd, the design circles C_{5} twice before the sequence of edges in $\{5 /(1,1)\}$ ends with a red edge.

Corollary A.1.2 . The design $\left\{n / A_{m}\right\}$ is an A_{m}-step $\frac{m}{d}$-Hamiltonian tour of the vertices of C_{n} if and only if m equals the number of times the tour passes through each vertex multiplied by the $\operatorname{gcd}\left(n, s_{m}\right)$. Proof. This is just a restatement of the fact that $\frac{m}{d}$ equals the number of times the design passes through each vertex.

This allows us to easily specify examples of $\left\{n / A_{m}\right\}$ designs that are A_{m}-step Hamiltonian tours. For example, if $m=1$ then we have the usual star polygon result that such a star polygon $\{n / k\}$ passes through each vertex of C_{n} if and only if $\operatorname{gcd}(n, k)=1$. If $m=2$ then we must also have $d=\operatorname{gcd}\left(n, s_{m}\right)=2$. Since s_{m} must be a multiple of $d=2$ the only possibility for S_{m} in this case is $S_{2} \equiv(1,0), \bmod 2$. This forces $A_{2} \equiv$
$(1,1), \bmod 2$; in other words, the only designs $\left\{n / A_{2}\right\}$ that are A_{2}-step Hamiltonian tours of C_{n} are those in which a_{1} and a_{2} are odd and $\operatorname{gcd}\left(n, s_{2}=a_{1}+a_{2}\right)=2$. So if we pick two odd numbers, say 3 and 7 and a value of n which shares only the common factor of 2 with $3+7$, say $n=12$, then $\{12 /(3,7)\}$ forms a (3,7)step Hamiltonian tour of C_{10}, see Figure A. 1 (c).

$$
\text { If } \frac{m}{d}=1 \text { then we must have } m=d \text { so we have the following: }
$$

Corollary A.1.3.The design $\left\{n / A_{m}\right\}$ is an A_{m}-step Hamiltonian tour of C_{n} if and only if the following two conditions hold:

1. $d=\operatorname{gcd}\left(n, s_{m}=a_{1}+a_{2}+a_{3}+, \ldots,+a_{m}\right)=m$.
2. The m sums $s_{1}=a_{1}, s_{2}=a_{1}+a_{2},, s_{3}=a_{1}+a_{2}+a_{3}, \ldots, s_{m}=a_{1}+a_{2}+a_{3}+, \ldots,+a_{m}$, are distinct, $\bmod m$.

Given a value for m such as $m=6$, we can use Corollary A.1.2 to show that the values of k such that there are A_{m}-step k-Hamiltonian tours of C_{n} are the divisors of 6 , namely $k=1,2,3$, and 6 .

Corollary A.1.4. The number of values of k such that there are A_{m}-step k-Hamiltonian tours of C_{n} is $\tau(m)$ $=$ the number of positive integer divisors of m.
Proof. $k=\frac{m}{d}$ so k must be a divisor of m for $\left\{n / A_{m}\right\}$ to be A_{m}-step k-Hamiltonian. We must also find an A_{m} and at least one value of n such that $\left\{n / A_{m}\right\}$ is an A_{m}-step k-Hamiltonian tour of C_{n}. Note that $\operatorname{gcd}(n=k d+$ $d, m=k d)=d$, so let $n=(k+1) d$. Let $A_{m}=(1,1,1, \ldots, 1)$, a sequence of $m=k d$ ones. Then $s_{1}=1, s_{2}=2, s_{3}$ $=3, \ldots, s_{m}=m$ and each of the d values of $e_{i}=k$.

This tells us, for example, that a necessary condition for the existence of A_{m}-step 2-Hamiltonian tours of C_{n} is that m is even, that A_{m}-step 3-Hamiltonian tours exist only for m divisible by 3, etc. For example, Figure A.1(f) shows a (1,1)-step 2-Hamiltonian tour of C_{5} in which m but not n is divisible by 2 . In the example in the proof in which all edges are of weight 1 we might alternate edges of d colors.

Theorem A.2. Let n and $m \leq n$ be positive integers such that $\operatorname{gcd}(n, m)=m$. Then there are $(m-1)$! distinct types of designs $\left\{n / A_{m}\right\}$ that are A_{m}-step Hamiltonian tours of C_{n}.

By "type" we mean that $s_{1}, s_{2}, s_{3}, \ldots, s_{m-1}$ are congruent, $\bmod m$, to a permutation of $\{1,2,3, . ., m-1\}$, and s_{m} is congruent to $0, \bmod m$. Actual values for the s_{i} may be chosen from $\{1,2,3, \ldots, n\}$. Values for the a_{i} are then calculated from the s_{i} as described in the proof:

Proof. For $m=1$ we simply have the $0!=1$ design type $\{n / k\}$ where $\operatorname{gcd}(n, k)=1$. For $m>1$ there are $(m-$ $1)$! sequences of partial sums of the form $S=\left(s_{1}, s_{2}, s_{3}, \ldots, s_{m-1}, s_{m} \equiv 0(\bmod d)\right)$ where $\left(s_{1}, s_{2}, s_{3}, \ldots, s_{m-1}\right)$ is one of the ($m-1$)! permutations of $\{1,2,3, \ldots, m-1\}$. Each such set S generates an ordered m-tuple $A=\left(a_{1}\right.$, $\left.a_{2}, a_{3}, \ldots, a_{m-1}, a_{m}\right)=\left(s_{1}, s_{2}-s_{1}, s_{3}-s_{2}, \ldots, s_{m-1}-s_{m-2}, s_{m}-s_{m-1}\right)$. That m-tuple A_{m} in turn generates the unique sequence of partial sums S. By Corollary A.1.3 $\left\{n / A_{m}\right\}$ is an A_{m}-step Hamiltonian tour of C_{n}.

For example, we will use these ideas to determine the number of A_{m}-step Hamiltonian tours of C_{12}. We first note that there are six possible values for $d=m=\operatorname{gcd}\left(12, s_{m}\right)$, namely the six divisors of $12: 1,2,3,4,6,12$.
(1) $d=m=1$. There are $\varphi(12)=4$ positive integers $1,5,7$, and 11 that are less than 12 and relatively prime to 12 . Here φ is the Euler totient function where $\varphi(n)=$ the number of positive integers less than or equal to n that are relatively prime to n. Each gives rise to one A_{1}-step Hamiltonian tour of C_{12}, the four star polygons $\{12 / 1\},\{12 / 5\},\{12 / 7\}$, and $\{12 / 11\}$. We note that as undirected graphs $\{12 / 1\}$ and $\{12 / 11\}$ appear identical, as do $\{12 / 5\}$ and $\{12 / 7\}$, though we will not denote those as the same since there may be applications in which the differences as directed graphs are important.
(2) $d=m=2 . \varphi\left(\frac{12}{2}\right)=2$ since 1 and 5 are relatively prime to 6 , and these give possible values of s_{2} of $2 \cdot 1=2$ or $2 \cdot 5=10$ since they are the positive integers less than 12 that have gcd of 2 with 12 . Then s_{1} must be congruent to $1, \bmod 2$, so its $\left(\frac{12}{2}\right)=$ six possible values are $1,3,5,7,9$, and 11 . So there are $(2-1)!\cdot 2 \cdot\left(\frac{12}{2}\right)=12 A_{2}$-step Hamiltonian tours of C_{12}. These are $\{12 /(1,1)\},\{12 /(1,9)\}$, $\{12 /(3,11)\},\{12 /(3,7)\},\{12 /(5,9)\},\{12 /(5,5)\},\{12 /(7,7)\},\{12 /(7,3)\},\{12 /(9,5)\},\{12 /(9,1)\}$, $\{12 /(11,3)\}$, and $\{12 /(11,11)\}$. Note that there is significant duplication here, for example, $\{12 /(5,5)\}$ is identical to $\{12 / 5\}$, though in some applications we might want to alternate colors of the weight five edges. Also $\{12 /(7,3)\}$ and $\{12 /(3,7)\}$ will be mirror images. For now we avoid cataloging or counting types of duplication. See Figure A.1(c).
(3) $d=m=3 \cdot \varphi\left(\frac{12}{3}\right)=2$, giving $s_{3}=3 \cdot 1=3$ or $3 \cdot 3=9$. There are 2 ! $\bmod 3$ choices for $S_{3},(1,2,0)$ or $(2,1,0)$. For $S_{3}=(1,2,0)$ there are $\left(\frac{12}{3}\right)=4$ choices for values of s_{1} that are congruent to 1 , mod 3 : $1,4,7$, or 10 . Similarly there are 4 choices for s_{2} that are congruent to $2, \bmod 3: 2,5,8$, or 11 . Thus the total number of A_{3}-step Hamiltonian tours of C_{12} is $(3-1)!\cdot 2 \cdot\left(\frac{12}{3}\right) \cdot\left(\frac{12}{3}\right)=64$., for example $\{12 /(7,5,9)\},\{12 /(7,5,3)\},\{12 /(1,8,9)\}$, etc.
(4) $d=m=4$. $\varphi\left(\frac{12}{4}\right)=2$, so $s_{4}=4 \cdot 1=4$ or $4 \cdot 2=8$, and the total number of A_{4}-step Hamiltonian tours of C_{12} is $(4-1)!\cdot \varphi\left(\frac{12}{4}\right) \cdot\left(\frac{12}{4}\right)^{3}=324$. See Figure A.1(d).
(5) $d=m=6$. Using the same algorithm the number of A_{6}-step Hamiltonian tours of C_{12} is $(6-1)!\cdot \varphi\left(\frac{12}{6}\right) \cdot\left(\frac{12}{6}\right)^{5}=3840$.
(6) $d=m=12$. The number of A_{12}-step Hamiltonian tours of C_{12} is $(12-1)!\cdot \varphi\left(\frac{12}{12}\right) \cdot\left(\frac{12}{12}\right)^{11}=$ $39,916,800$. These are simply the 11 ! permutations of the eleven vertices other than 0 of C_{12}.

For small values of m we can now easily tabulate all types of $\left\{n / A_{m}\right\}$ designs that give A_{m}-step Hamiltonian tours for any n by calculating a_{1} to a_{m-1} from the $(m-1)$! permutations of $(1,2,3, \ldots, m-1)$:

Corollary A.2.1. (i) The design $\{n /(a, b)\}$ is an (a, b)-step Hamiltonian tour of C_{n} if and only if $\operatorname{gcd}(n, a+b)$ $=2$ and a and b are odd.
(ii) The design $n /(a, b, c)\}$ is an (a, b, c)-step Hamiltonian tour of C_{n} if and only if $\operatorname{gcd}(n, a+b+c)=3$ and either $a \equiv b \equiv c \equiv 1(\bmod 3)$ or $a \equiv b \equiv c \equiv 2(\bmod 3)$.
(iii) The design $\{n /(a, b, c, d)\}$ is an (a, b, c, d)-step Hamiltonian tour of C_{n} if and only if $\operatorname{gcd}(n, a+b+c+d)$ $=4$ and (a, b, c, d) is congruent, $\bmod 4$, to either $(1,1,1,1),(3,3,3,3),(1,2,3,2),(2,3,2,1),(3,2,1,2)$, or $(2,1,2,3)$.

The example above for C_{12} establishes the pattern for C_{n}, though we would want to pay attention to duplications or ignore less interesting examples such as the $(n-1)$! permutations of $n-1$ of the vertices:

Theorem A.3. The number of A_{m}-step Hamiltonian tours of C_{n} is $\sum\left[\varphi\left(\frac{n}{m}\right)(m-1)!\left(\frac{n}{m}\right)^{m-1}\right]$, where the summation is taken over all factors m of n, and φ is the Euler totient function.

References

See the references in the primary Bridges paper.

