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In this Appendix prepared by the first author we first give an algebraic solution to the problem of the 
{6/(3,2)} and {6/(4,3) passing patterns, and then establish several theorems that characterize and count 
{n/(a1, a2, a3,…, am)} designs and show their connection to a variation on Hamiltonian tours of cycles Cn, 
as explained in the primary Bridges paper. 

{6/(3,2)} and {6/(4,3) passing patterns problem 

We need to calculate separately for even and odd numbers of passes. If the total number of passes is x, then 
for ease of calculation, we will let y be the number of passes of the first weights in each sequence, 3 and 4. 
If x is even, then the number of weight 3 and weight 2 blue ball passes and the number of weight 4 and 
weight 3 red ball passes are each y = !

"
. If the total number of passes x is odd, as in the solution shown in 

Figure 2(b) in the primary Bridges paper, then the number of weight 3 blue ball passes and the number of 
weight 4 red ball passes are each y = !#$

"
, while the number of weight 2 blue ball passes and the number of 

weight 3 red ball passes are each  y –1 = !–$
"

. 
 
For even numbers of passes we solve 1 + 3y + 2y ≡ 2 + 4y +3y (mod 6). This simplifies to 4y ≡ 1 

(mod 6) which has no solutions since 2 = gcd(4,6) is not a divisor of 1, and the balls never meet on an even 
pass. For odd numbers of passes we solve 1 + 3y + 2(y – 1) ≡ 2 + 4y +3(y – 1) (mod 6). This simplifies to 
4y ≡ 0 (mod 6), with solutions y ≡ 0 or 3 (mod 6) which can be represented by y = 6k or 6k + 3 for k any 
non-negative integer. Since y = !#$

"
, solving for x gives x = 2y – 1 = 12k – 1 or 12k + 5, shown in Table 2 in 

the primary Bridges paper by the shaded blue columns.  

Characterizing and counting {n/(a1, a2, a3,…, am)} designs 

With respect to the n vertices of the cycle Cn let m be an integer in the set {1,2,3,…,n} and let si ≡ a1 + a2 
+ a3 + … + ai (mod n) for i = 1,2,3,…,m. The design {n/Am)} = {n/(a1, a2, a3,…, am)} is the directed 
multigraph (typically) beginning at vertex 0 with edges successively of weight a1, a2, a3, …, am, continuing 
with another sequence of edges of weight a1, a2, a3, …, am until an am edge first terminates at 0. This will 
first occur when the sum of the edge weights in the overall sequence reaches lcm(n, sm), the least common 
multiple of n and sm, forming a circuit through a subset of the vertices of  Cn. If the design {n/Am)} includes 
each vertex of Cn exactly k times we say that it is also an (a1, a2, a3,…, am)-step k-Hamiltonian tour of Cn. 
If k = 1 and each vertex of Cn appears once then the design may be called an (a1, a2, a3,…, am)-step 
Hamiltonian tour of Cn. For convenience we define Sm = (s1, s2, s3,…, sm), and d = gcd(n,sm). For 0 ≤ k <    
d  define ek = the number of elements of Sm that are congruent to k, mod d, and let E = (e0, e1, e2,…, ed–1). 
We will use E in the following discussion. See the examples in Figure A.1. 

The edges of {n/(a1, a2, a3,…, am)} are as follows, where it is convenient to reduce to elements of 
the set of least residues, mod n, {0,1,2,…,n–1}, we have: 
 
(0, s1), (s1, s2),…,( sm–1, sm), …, 
 (sm, sm+s1), (sm+s1, sm+s2),…,(sm+sm–1, 2sm),…, 
…, 
($&
'
– 1'sm,	$&

'
– 1'sm + s1), ($

&
'
– 1'sm + s1, ($

&
'
– 1'sm + s2),…, ($&

'
– 1'sm + sm–1, $

&
'
'sm = lcm(n,sm)) 

Note that in a multigraph two vertices may be joined by more than one edge and some {n/Am} 
designs will include multiple edges rather than have the design traverse the same edge more than once. 
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Figures A.1 (a) and (b) show examples {12/(1,4,1,2)} and {8/(2,4)}. Note that in {12/(1,4,1,2)} the vertices 
3, 7, and 11, which are each congruent to 3, mod 4, have degree 0; the vertices 0, 2, 4, 6, 8, and 10, which 
are congruent to 0 or 2, mod 4, have degree 2; and the vertices 1, 5, and 9, which are congruent to 1, mod 
4, have degree 4. In {8/(2,4)}even vertices have degree four, odd vertices have degree zero, and multiple 
edges join pairs of even vertices. The Figure A.1(b) design duplicates that of a string loop tetrahedron held 
by four hands [4].  

 

Figure A.1: (a) {12/(1,4,1,2). (b) {8/(2,4). (c) {12/(3,7)}. (d) {12/(3,6,1,10)}. (e) {12/(1,5,1,3)}. (f) {5/(1,1)}. 

Since n is divisible by d the vertex labels of Cn, which are the elements {0, 1, 2, …, n–1} of  Z/nZ, 
are naturally partitioned into equal size subsets congruent, mod d, to one of either 0, 1, 2, …, or d–1. For 
example, for {12/(1,4,1,2)}, d = 4 and those four subsets are {0,4,8}, {1,5,9}, {2,6,10}, and {3,7,11}. Since 
S4 = (1,5,6,8) ≡ (1,1,2,0), (mod 4), therefore E = (1,2,1,0). For {8/(2,4)} we have d = 2, S2 = (2,6) ≡ (0,0), 
(mod 2), therefore and E = (2,0).  

We summarize parameters for {n/Am} in  

Theorem A.1. The design {n/Am} on the vertices of Cn is a circuit with a total of  &(
'

 edges and in which 
&(
'

 is also the number of times vertices appear in {n/Am}. The degree of each vertex that is congruent to k, 
mod d, is 2ek. The total number of edges of weight ai is &

'
 times the number of times that value ai appears 

in Am.  

Proof. The number of times the sequence Am appears in the construction of{n/Am} is &
'
 and each such 

occurrence of Am gives rise to m edges so {n/Am} has a total of &(
'

 edges. Each time that each of the m 
values ai appears in Am gives rise to &

'
 edges of weight ai in {n/Am}. 
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We need to take care to understand whether vertices and edges are duplicated within the design or whether 
they appear uniquely. To calculate the degree of each vertex in {n/Am} we need to show that every value si 
of Sm generates exactly one pass of the circuit through each of the &

'
 vertices of Cn that are congruent to si, 

mod d. The multiples of sm, {sm, 2sm, 3sm, …, $&
'
'sm ≡ 0 (mod n)}, must be distinct, mod n, since if xsm ≡ 

ysm (mod n) for 1 ≤ x < y ≤ $&
'
' then (y – x)sm ≡ 0 (mod n) and (y – x) < $&

'
' contradicting the fact that 

$&
'
'sm is the least common multiple of n and sm. Since d = gcd(n,sm), this set of $&

'
' multiples of sm is 

identical to the set {d, 2d,3d, …, $&
'
'd = n ≡ 0 (mod n)} of $&

'
' distinct multiples of d, mod n. Similarly for 

any 1 ≤ j ≤ d and 0 ≤ x < y ≤ $&
'
', we must have that xsm + j and ysm + j are distinct mod n. For any 1 ≤	i 

≤ j ≤ d if xsm + i ≡ ysm + j (mod n), then (y – x)sm + (j – i) = kn for some k. Reducing this equation, mod d, 
since sm and n are both multiples of d, gives (y – x)∙0 + (j – i) ≡ k∙0, mod d, which would imply i = j, so xsm 
+ i and ysm + j must be distinct. Each value si in Sm is of the form xsm + k for 0 ≤	k ≤ d – 1, as described 
above, and is congruent to k, mod d. In the $&

'
' occurrences of Sm in {n/Am} that si causes the circuit to pass 

through each vertex congruent to k, mod d, exactly once. Therefore, since ek represents the number of times 
values si of Sm are congruent to k, mod d, ek also represents the number of times {n/Am} passes through each 
vertex of Cn congruent to k, mod d. So any vertex congruent to k, mod d, will have degree 2ek in {n/Am}. 

Corollary A.1.1. {n/Am} forms an Am-step (
'
−Hamiltonian tour of the vertices of Cn if and only if all values 

of E = (e0, e1, e2,…, ed–1) are identical. 

Proof. By theorem 1, &(
'

 is the total number of times the circuit passes through vertices. If all the values of 
E = (e0, e1, e2,…, ed–1) are the same then also all vertex degrees will be the same, and the degree of each 
vertex will be  2 $

&
&(
'

 = "(
'

, and {n/Am} forms an Am-step (
'
−Hamiltonian tour. 

Suppose {n/Am} forms an Am-step (
'
−Hamiltonian tour of the vertices of Cn. Then the degree of each 

vertex congruent to k, mod d, will be "(
'

 = 2ek, so ek = (
'

 for all k since all vertices have the same degree 
in an Am-step (

'
−Hamiltonian tour. 

Example. Figure A.1(e) shows {12/(1,5,1,3)} for which d = 2. Edges of weight 1 appear 2	∙ $"
"

 =12 times, 

and all vertices are degree 2	∙ )
"
  = 4. Figure A.1(f) shows {5/(1,1)} for which d = 1. We may consider that 

every integer is congruent to 0, mod 1 since division by 1 leaves remainder 0 in all cases. All vertices are 
of degree 2	∙ "

$
  = 4. Since the edges alternate in color blue, red, blue, red,…, and n = 5 is odd, the design 

circles C5 twice before the sequence of edges in {5/(1,1)} ends with a red edge.  

Corollary A.1.2 . The design {n/Am} is an Am-step (
'
−Hamiltonian tour of the vertices of Cn if and only if 

m equals the number of times the tour passes through each vertex multiplied by the gcd(n,sm).  
Proof. This is just a restatement of the fact that (

'
 equals the number of times the design passes through 

each vertex. 

This allows us to easily specify examples of {n/Am} designs that are Am-step Hamiltonian tours. For 
example, if m = 1 then we have the usual star polygon result that such a star polygon {n /k} passes through 
each vertex of Cn if and only if gcd(n,k) = 1. If m = 2 then we must also have d = gcd(n,sm) = 2. Since sm 
must be a multiple of d = 2 the only possibility for Sm in this case is S2 ≡ (1,0), mod 2. This forces A2 ≡ 
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(1,1), mod 2; in other words, the only designs {n/A2} that are A2-step Hamiltonian tours of Cn are those in 
which a1 and a2 are odd and gcd(n, s2 = a1 + a2) = 2. So if we pick two odd numbers, say 3 and 7 and a 
value of n which shares only the common factor of 2 with 3 + 7, say n = 12, then {12/(3,7)} forms a (3,7)-
step Hamiltonian tour of C10, see Figure A.1 (c). 

If (
'

 = 1 then we must have m = d so we have the following: 

Corollary A.1.3.The design{n/Am} is an Am-step Hamiltonian tour of Cn if and only if the following two 
conditions hold: 
1. d = gcd(n, sm = a1 + a2 + a3 +,…, + am) = m. 
2. The m  sums  s1 = a1, s2 = a1+a2, , s3 = a1+a2+a3, …, , sm = a1+a2+a3 +,…, +am, are distinct, mod m.  
 
Given a value for m such as m = 6, we can use Corollary A.1.2 to show that the values of k such that there 
are Am-step k-Hamiltonian tours of Cn are the divisors of 6, namely k = 1, 2,  3, and 6. 
 
Corollary A.1.4. The number of values of k such that there are Am-step k-Hamiltonian tours of Cn is 𝜏(m) 
= the number of positive integer divisors of m. 
Proof. k = (

'
 so k must be a divisor of m for {n/Am} to be Am-step k-Hamiltonian. We must also find an Am 

and at least one value of n such that {n/Am} is an Am-step k-Hamiltonian tour of Cn. Note that gcd(n = kd + 
d, m = kd) = d, so let n = (k + 1)d. Let Am = (1,1,1,…,1), a sequence of m = kd ones. Then s1 = 1, s2 = 2, s3 

= 3,…, sm = m and each of the d values of ei = k.  
 
This tells us, for example, that a necessary condition for the existence of Am-step 2-Hamiltonian tours of Cn 
is that m is even, that Am-step 3-Hamiltonian tours exist only for m divisible by 3, etc. For example, Figure 
A.1(f) shows a (1,1)-step 2-Hamiltonian tour of C5 in which m but not n is divisible by 2. In the example in 
the proof in which all edges are of weight 1 we might alternate edges of d colors. 
 
Theorem A.2. Let n and m ≤ n be positive integers such that gcd(n,m) = m. Then there are (m–1)! distinct 
types of designs {n/Am} that are Am-step Hamiltonian tours of Cn.  
 
By “type” we mean that s1, s2, s3, …, sm–1 are congruent, mod m, to a permutation of {1,2,3,..,m–1}, and sm 
is congruent to 0, mod m. Actual values for the si may be chosen from {1,2,3,…,n}. Values for the ai are 
then calculated from the si as described in the proof: 
 
Proof. For m = 1 we simply have the 0! = 1 design type {n/k} where gcd(n,k) = 1. For m > 1 there are (m–
1)! sequences of partial sums of the form S = (s1, s2, s3,…, sm–1, sm ≡  0 (mod d)) where (s1, s2, s3,…, sm–1) 
is one of the (m–1)!  permutations of {1,2,3,..,m–1}. Each such set S generates an ordered m-tuple A = (a1, 
a2, a3,…, am–1, am) = (s1, s2 – s1, s3 – s2,…, sm–1 – sm–2, sm – sm–1). That m-tuple Am in turn generates the unique 
sequence of partial sums S. By Corollary A.1.3 {n/Am} is an Am-step Hamiltonian tour of Cn. 
 
For example, we will use these ideas to determine the number of Am-step Hamiltonian tours of C12. We first 
note that there are six possible values for d = m = gcd(12,sm), namely the six divisors of 12: 1,2,3,4,6,12.  

(1) d = m = 1. There are 𝜑(12) = 4 positive integers 1,5,7, and 11 that are less than 12 and relatively 
prime to 12. Here 𝜑 is the Euler totient function where 𝜑(n) = the number of positive integers less 
than or equal to  n that are relatively prime to n. Each gives rise to one A1-step Hamiltonian tour of 
C12, the four star polygons {12/1}, {12/5}, {12/7}, and {12/11}. We note that as undirected graphs 
{12/1} and {12/11} appear identical, as do {12/5} and {12/7}, though we will not denote those as 
the same since there may be applications in which the differences as directed graphs are important. 
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(2) d = m = 2. φ$$"
"
' = 2 since 1 and 5 are relatively prime to 6, and these give possible values of s2 

of 2∙1 = 2 or 2∙5 = 10 since they are the positive integers less than 12 that have gcd of 2 with 12. 
Then s1 must be congruent to 1, mod 2, so its $$"

"
' = six possible values are 1,3,5,7,9, and 11. So 

there are (2–1)!	∙2∙ $$"
"
'	=	12	A2-step Hamiltonian tours of C12. These are {12/(1,1)}, {12/(1,9)}, 

{12/(3,11)}, {12/(3,7)}, {12/(5,9)}, {12/(5,5)}, {12/(7,7)}, {12/(7,3)}, {12/(9,5)}, {12/(9,1)}, 
{12/(11,3)}, and {12/(11,11)}. Note that there is significant duplication here, for example, 
{12/(5,5)} is identical to {12/5}, though in some applications we might want to alternate colors of 
the weight five edges. Also {12/(7,3)} and {12/(3,7)} will be mirror images. For now we avoid 
cataloging or counting types of duplication. See Figure A.1(c). 

(3) d = m = 3.	φ $$"
*
' = 2, giving s3 = 3∙1 = 3 or 3∙3= 9. There are 2! mod 3 choices for S3, (1,2,0) or 

(2,1,0). For S3 = (1,2,0) there are $$"
*
' = 4 choices for values of s1 that are congruent to 1, mod 3: 

1,4,7, or 10. Similarly there are 4 choices for s2 that are congruent to 2, mod 3: 2,5,8, or 11. Thus 
the total number of A3-step Hamiltonian tours of C12 is (3–1)!∙2∙ $$"

*
' ∙ $$"

*
'	=	64.,	for	example	

{12/(7,5,9)},	{12/(7,5,3)},	{12/(1,8,9)},	etc. 
(4) d = m = 4. φ$$"

)
'  = 2, so s4 = 4∙1 = 4 or 4∙2 = 8, and the total number of A4-step Hamiltonian tours 

of C12 is (4–1)!	∙ φ $$"
)
' ∙ $$"

)
'
*
	=	324.	See Figure A.1(d). 

(5) d = m = 6. Using the same algorithm the number of A6-step Hamiltonian tours of C12 is 

(6–1)!	∙ φ $$"
+
' ∙ $$"

+
'
,
	=	3840. 

(6) d = m = 12. The number of A12-step Hamiltonian tours of C12 is(12–1)!	 ∙ 𝜑 $$"
$"
' ∙ $$"

$"
'
$$
	 =	

39,916,800. These are simply the 11! permutations of the eleven vertices other than 0 of C12. 

For small values of m we can now easily tabulate all types of {n/Am} designs that give Am-step Hamiltonian 
tours for any n by calculating a1 to am–1 from the (m – 1)! permutations of (1,2,.3,…,m–1): 

Corollary A.2.1. (i) The design {n/(a,b)} is an (a,b)-step Hamiltonian tour of Cn if and only if gcd(n,a + b) 
= 2 and a and b are odd. 
(ii) The design n/(a,b,c)} is an (a,b,c)-step Hamiltonian tour of Cn if and only if gcd(n,a + b + c) = 3 and 
either a ≡ b ≡ c ≡ 1 (mod 3) or a ≡ b ≡ c ≡ 2 (mod 3). 
(iii) The design {n/(a,b,c,d)} is an (a,b,c,d)-step Hamiltonian tour of Cn if and only if gcd(n,a + b + c + d) 
= 4 and (a,b,c,d) is congruent, mod 4, to either (1,1,1,1), (3,3,3,3), (1,2,3,2), (2,3,2,1), (3,2,1,2), or (2,1,2,3). 

The example above for C12 establishes the pattern for Cn, though we would want to pay attention to 
duplications or ignore less interesting examples such as the (n – 1)! permutations of n – 1 of the vertices: 

Theorem A.3. The number of Am-step Hamiltonian tours of Cn is ∑Jφ $&
(
' (𝑚 − 1)! $&

(
'
(-$

M, where the 
summation is taken over all factors m of n, and 𝜑 is the Euler totient function. 
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