An Initial Attempt at a Mathematical Treatment of Translational Coordinate-Motion Puzzles

Supplement

George I. Bell
Louisville, Colorado, USA; gibell@comcast.net

Rods and Holes Procedure for a Regular Polygon

Here we apply the rods and holes procedure to a regular polygon with n sides. The $3^{\text {rd }}$ dimension plays no role here as no movement is possible in z. Therefore, we drop the z-coordinate of all vectors.

The piece shape is a triangular sector of angle $2 \pi / n$, as shown in Figure 1s. We can think of the rod as infinitely thin, i.e. a line which must be aligned with another line (the hole) in the next piece.

Figure 1s: Piece 1, a triangular sector of angle $2 \pi / n$ with rod and hole represented by lines.
We write $\vec{p}_{i}=\left(p_{i}, q_{i}\right)$ and consider that \vec{p}_{n+1} is the same as \vec{p}_{1}. As pieces 1 and 2 move apart, the condition that the rod from piece 1 slides smoothly along the hole of piece 2 is $\vec{p}_{2}-\vec{p}_{1} \perp L$, where L is the line separating pieces 1 and 2 . We can write this condition for general i as

$$
\begin{equation*}
\left(\vec{p}_{i+1}-\vec{p}_{i}\right) \cdot\left(\cos \frac{2 \pi i}{n}, \sin \frac{2 \pi i}{n}\right)=0, i=1,2, \cdots, n . \tag{1s}
\end{equation*}
$$

Which can be written as a set of n linear equations for the unknowns p_{i} and q_{i},

$$
\begin{equation*}
\left(p_{i+1}-p_{i}\right) \cos \frac{2 \pi i}{n}+\left(q_{i}-q_{i+1}\right) \sin \frac{2 \pi i}{n}=0 \tag{2s}
\end{equation*}
$$

In addition we remove any overall translation by requiring

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i}=0 \tag{3s}\\
& \sum_{i=1}^{n} q_{i}=0 \tag{4s}
\end{align*}
$$

Equations $(2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s})$ constitute a set of $n+2$ linear homogeneous equations with $2 n$ unknowns. Such a system of equations has a null space of dimension $2 n-(n+2)=n-2$. This is the number of degrees of freedom in this mechanical system (when rotations are not allowed).

For example, when $n=5$ we can use a numerical matrix package to obtain a basis for the null space:

N [NullSpace [m5]]

$$
\begin{aligned}
& \{\{0 ., 2 ., 3.3022,0.927051,-0.224514,-3.92705,-3.07768,0 ., 0 ., 1 .\}, \\
& \{1 .,-1.6246,-2.45492,-0.502029,-0.545085,2.12663,1 ., 0 ., 1 ., 0 .\}, \\
& \{0 .,-3.23607,-3.80423,-2 ., 0.726543,4.23607,3.07768,1 ., 0 ., 0 .\}\}
\end{aligned}
$$

Each row gives a null space basis vector of the form $\left\{p_{1}, q_{1}, p_{2}, q_{2}, p_{3}, q_{3}, p_{4}, q_{4}, p_{5}, q_{5}\right\}$. Figure 2 s shows the third basis vector.

Figure 2s: The third basis vector showing piece movements. The orange piece (\#5) is stationary.
The Piece Movement Vectors (PMVs) also satisfy the linear Equations ($2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$), but we add additional constraints that the pieces cannot overlap. These constraints are:

$$
\left(\vec{p}_{i+1}-\vec{p}_{i}\right) \cdot\left(-\sin \frac{2 \pi i}{n}, \cos \frac{2 \pi i}{n}\right) \geq 0, i=1,2, \cdots, n
$$

or

$$
\begin{equation*}
\left(p_{i}-p_{i+1}\right) \sin \frac{2 \pi i}{n}+\left(q_{i+1}-q_{i}\right) \cos \frac{2 \pi i}{n} \geq 0 \tag{5s}
\end{equation*}
$$

We note that neither of the three basis vectors for the null space satisfy this constraint.
The solution to Equations $(2 s, 3 s, 4 s)$ under the n constraints (5 s) is not a vector space, but rather a convex cone. It is more difficult to calculate the PMVs, but using a mechanical model of the $n=5$ puzzle the solution in Figure 3s was discovered. The exact form of this solution vector, in the same form as above, is:

$$
\{\delta, 1, \delta, 1,-4 \delta, 0, \delta,-1, \delta,-1\} \text { where } \delta=-\frac{1}{5} \tan \frac{4 \pi}{5} \cong 0.1453
$$

Figure 3s: A PMV for the $n=5$ case.
The PMV in Figure 3s can be rotated to make four more PMV's. Each is unique in the sense that it cannot be written as a non-negative linear combination of the other 4. Thus, I claim that the case $n=5$ has 3 degrees of freedom, and disassembly dimension $D \geq 5$.

