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Abstract
Ernst and Sumners’ theorem, affirming that knots constitute a form of big data, coupled with the comprehensive
knot tabulation by Burton, Hoste, Thistlethwaite, and Weeks, along with numerous computations of knot invariants,
establishes the groundwork for employing big data methodologies in knot theory. Utilizing dimension reduction and
machine learning methods, such as Ball Mapper, not only yields valuable insights into the statistical characteristics
of knots but also offers compelling means to visually represent the intricate space of knots. The appeal of generative
art obtained is multifaceted, encompassing both aesthetic appeal and the complexity of mathematical statements.

1 Knots as Big Data

Knots and links possess a profound presence in the realm of art, spanning across diverse cultures and
historical periods including Babylonian, Egyptian, Greek, Chinese, Byzantine, and Celtic traditions. This
rich heritage continues to influence modern art, as seen in the sculptures of artists such as A. Brakke, B.
Collins, Bathsheba C.O. Perry, and R. Roelofs. Some of the recent art relies on advanced computational
and technological advances such as 3D printing, while our artwork harvests the power of big data analysis
techniques as well as the recent developments in knot theory.

According to the theorem by Ernst and Sumners, the number of distinct knots increases exponentially
with the minimal crossing number. This theorem implies that knots are "big data" which is evident from
knot tables containing over 350 million knots with up to 19 and almost 1.9 billion with 20 crossings obtained
by Burton and Thistlethwaite respectively. Viewing knots as big data opens new ways of analyzing and
visualizing collections of knots through the use of advanced big data visualization techniques, such as Ball
Mapper [2], in conjunction with other dimension reduction and ML methods [1, 3].

In order to extract simpler descriptors of these remarkably complex geometric objects to use as in input
input for these techniques we turn to knot theory. One solution comes in the form of knot invariants, essential
tools for distinguishing knots. Knot invariants can be numerical, such as crossing or linking numbers or
signature, polynomials such as Alexander, Jones, Kauffman etc. or more algebraically sophisticated such as
link homology theories. What all invariants have in common is the aim to capture distinct characteristics that
are preserved under isotopic transformations of a knot, thereby providing a mathematical fingerprint of sorts.
However, most of the computable knot invariants fail to distinguish all knots. For example, the infinite family
of pretzel knots with the Conway symbol (2𝑘 + 1), 3,−3 have the Alexander polynomial equal to 2− 5𝑥 + 2𝑥2

but they are distinguished by their Jones polynomials.
Instead of comparing knot invariants via classification tasks we delve into visual exploration of the

data obtained from knot invariants such as the Alexander polynomial of all alternating knots with up to
17 crossings, its roots, and several numerical knot invariants such as signature, determinant, and crossing
number. Using tools from Topological Data analysis we address open questions in knot theory showcasing how
data-driven approaches can be leveraged to obtain new theoretical insights and generate art by visualizing



relations, (re)discovering theorems, and robust statistical results. Integration of diverse approaches in
solving sophisticated mathematical problems emphasizes harmonious blend of creativity and structure in
both mathematics and art [4].

Ball Mapper: Exploratory and Visualization Tool

The inherent complexity often drives the pursuit of simplification to enhance our understanding. Visualization
techniques offer a spectrum of methodologies for representing data, with the most prevalent approaches
involving linear or nonlinear embedding that aim to minimize a specific function. Notably, nonlinear
dimension reduction techniques such as t-SNE or UMAP have gained prominence for their efficacy in
preserving the local neighborhood structure of data points. However, a significant limitation of these
methods is their tendency to distort the global structure of the data, which often remains elusive. This
challenge underscores the value of topological data analysis tools, especially those based on mapper-type
algorithms, in providing a more comprehensive understanding of data structure.

For a given finite point sample 𝑋 and 𝜖 > 0, the Ball Mapper algorithm [2] constructs an undirected
graph 𝐺, called the Ball Mapper graph of 𝑋 at the radius 𝜖 , whose shape captures the essential feature of the
shape of 𝑋 . This is achieved by covering 𝑋 with a collection of overlapping balls of radius 𝜖 and assigning
a vertex of 𝐺 to each balls, while the edges represent their non-empty intersections. The Ball Mapper graph
𝐺 serves as a 1-dim model for the set 𝑋 . If the point cloud 𝑋 comes with a function 𝑓 : 𝑋 → R, the Ball
Mapper construction can be extended to visualize such function by coloring each vertex of the Ball Mapper
by the average value of the function within its corresponding ball of the cover. This approach provides a tool
to understand the shapes of complex, high-dimensional data, as well as to analyze functions defined on them.

Comparison between Ball Mapper, PCA, UMAP, t-SNE on the point cloud obtained from the coefficients
of the Alexander polynomial up to 17 crossing knots colored by the signature modulo 4 is shown in Fig. 1.
Ball Mapper indicates linear structure confirmed by the existence of dominant first principal component Fig.
1a, utterly different from the ones in Fig. 1b and 1c. The difference is likely due to properties of nonlinear
dimension reductions designed to preserve local structure of data sampled from manifolds. Hence, in the
case of highly non-generic data such as the ours, the outputs do not capture the underlying global structure.

(a) (b) (c)

Figure 1: Alexander data visualized using (a) 2D PCA (top) and Ball Mapper (bottom) (b) 2D UMAP (c)
2D t-SNE projections. All plots colored by signature modulo 4 (white is 0, red is 2).

Ball Mapper on Alexander Coefficient Data

Ball Mapper can be used to visualize relations, such as the one between the Alexander polynomial and other
knot invariants. Fig. 2 shows the Ball Mapper graph of the Alexander data, or Alexander BM for brevity,
colored by knot invariants such as the leading coefficient related to the fibredness or the maximal degree
that gives knot genus. providing insight into their global behaviour. For example, non-alternating knots are



concentrated in the middle, the signature and determinant increase from one to the other end, while maximal
degree of the Alexander polynomial filters the linear structure.

(a) (b)

Figure 2: Alexander BM colored by whether the knot is (a) alternating (green) or not (white), signature
(purple high, white low), signature mod 4 (red is 2, white is 0); (b) determinant (yellow low,
purple high), leading coefficient (white low, red high), maximal degree (white low, red high).

Ball Mapper is not just the visualization tool: it can generate art and hypothesis! The bottom BM graph in
Fig.2a implies that the Alexander polynomial detects signature mod 4 as one half is white (zero) and the other
red (two). SVM (Support vector machine) found a separating hyperplane normal vector [1,−1, 1,−1, . . .] in
17-dimensional Alexander data that recovers the theorem stating that the sign of the Alexander polynomial
evaluated at -1 determines signature mod 4. Fox trapezoidal conjecture, open since 1962, states that for an
alternating knot the absolute valued of coefficients first increases, then there are 𝑚 coefficients with constant
value then decrease in the same way (since it is palindromic). The conjecture is illustrated with elegant
images in Fig. 3 that relate plots of the Alexander coefficients for various classes of knots and the determinant
of the minimal real part of any of the zeros shown in Fig. 4a. Fig. 3b and 4b middle illustrate the distribution
of minimal real parts of any zer and Fig. 4c plots polynomials for non-alternating knots all contained in the
center of Alexander BM Fig. 4b bottom.

(a) (b) (c)

Figure 3: (a) Absolute values of the Alexander coefficients of 10 crossing knots and (c) all 3324 alternating
knots with 𝑚 = 2 colored by the absolute value of the determinant; (b) the first 500 alternating
knots colored by minimum value of the real part of any zero where red is high and white low.



(a) (b) (c)

Figure 4: (a) Zeros of the Alexander polynomials; (b) Alexander BM for all (top) and for alternating knots
(middle) colored by the minimum value of the real part of any zero (using the same color scale,

white is 0, red is negative). BM for non-alternating knots (bottom) where white means trapezoidal
and red means not; (c) Alexander polynomials of non-alternating non-trapezoidal knots.

Summary and Conclusions

In our visually inundated world big data analysis tools provide a way to explore complex, high dimensional,
hard-to-sample data, such as the global structure of millions of knots. Ball Mapper is one of them [6].
However, this comes with a cost: losing the specifics of the geometric knot by representing it instead by
a collection of numerical descriptors derived from knot invariants such as the Alexander polynomial. In
return, we get landscapes of knots, beautiful images and interactive 3d plots [7] rich in mathematical content.
Utility of Ball Mapper extends beyond knot invariants providing a tool [6] for the math and art community to
visualize essential features of high-dimensional data sets, functions on and relations between them.
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