
Shaping with Code and Mouse in Twoville

Chris Johnson1 and Will Morris2

Department of Computer Science, James Madison University, Harrisonburg, Virginia, USA
1johns8cr@jmu.edu, 2morri2wj@dukes.jmu.edu

Abstract

Twoville is a free and web-based bidirectional programming environment for making designs that can be fabricated. Its
users describe a design initially in code, but they modify the design and code simultaneously by clicking and dragging
directly on the output. The resulting vector graphic may be sent to a vinyl cutter, laser cutter, pen plotter, embroidery
machine, or other fabrication tool to produce a physical artifact. We developed Twoville to teach mathematics and
computer science in our community’s schools—and to make stickers, T-shirts, games, and greeting cards for more
personal reasons. In this workshop, we will guide participants through a series of Twoville-based computational
making exercises that they may use in their own classrooms and makerspaces.

Introduction

Two methods of interaction are commonly found in design tools: direct manipulation and indirect manipula-
tion. In a direct manipulation interface, designers click and drag on a canvas to manually place and modify
shapes. In an indirect manipulation interface, designers write code to algorithmically describe the shapes.
Each method has advantages. Direct manipulation is visually intuitive, whereas indirect manipulation distills
a shape down to its parametric essence. A design tool that supports both methods of interaction is a bidirec-
tional editor. Twoville [6] is a free and web-based bidirectional editor written by us to support computational
making in our local schools. Figure 1 shows a composite shape ready to be directly manipulated in Twoville.

Figure 1: A camel-horse-capybara composed of rectangles and circles in Twoville. The code editor reveals
the parameters of each shape. The canvas displays the shape and presents dramay be handles for

modifying the parameters.

Bridges 2024 Conference Proceedings

603



We think Twoville is useful, and we want to share it with others who make and teach. In 2021, we
shared an early prototype with the Bridges community [3], and it was warmly received. Now we are offering
a workshop in which participants will actively learn Twoville through a series of activities pulled from our
own tested curriculum. In this paper we describe the Twoville platform and the planned workshop activities.

Twoville

We built Twoville so that we and others can make computational things. Code is at the heart of computation,
but designing a physical object with only code is clumsy. Humans have a very powerful visual system, and
we want to put it to good use in Twoville. Likewise, a design tool that requires a complex sequence of clicks
and drags to perform every operation is tedious. Humans have a very powerful linguistic system, and we also
want to put it to good use in Twoville.

The name Twoville is a nod to Seymour Papert’s notion of Mathland [5]. Just as learning French is
most effective in France, learning mathematics is most effective in Mathland. Twoville is a space for learning
the mathematics and computer science of two-dimensional geometry. Its users speak in numbers, logic, and
relationships. They get feedback on every utterance and adjust their thinking accordingly. They produce and
consume shapes like the heptagon shown in Figure 2.

Figure 2: A heptagon fashioned with turtle geometry and a repeat loop. Instead of the traditional turn
command, which immediately redirects the turtle, we use the curl command, which traces out a

circular arc. Draggable handles control the parameters for the turtle, walk, and curl nodes.

Twoville supports a wide range of mathematical expression. Newer users construct designs using circles,
rectangles, and polygons. Intermediate users use turtle geometry, data abstraction, and iteration. Advanced
users use procedural abstraction, conditional logic, and trigonometric operations. We have successfully
employed Twoville in events for audiences with diverse prior experiences in mathematics and English. In
particular, we have used it in a weekly after-school program for middle schoolers and in summer camps for
high schoolers participating in a refugee resettlement program.

Many educational technologies lock the user’s creation to the technology used to create it. Programming
an interactive story locks the story to the computer. Programming a line-following robot locks the algorithm
to the robot. With Twoville, we aim to keep the user’s creation unplugged. The immediate output of a
Twoville program is a scalable vector graphics (SVG) file. We feed the SVG file into a fabrication tool like a

Johnson and Morris

604



vinyl cutter, laser cutter, pen plotter, or embroidery machine to turn a design into a physical object that has a
life independent of the computer used to make it. In this way, Twoville users can carry around or wear what
they make and share it with family and friends.

Shapes
Currently Twoville supports these six shape commands:

• circle, which has draggable parameters for its center and radius.
• rectangle, which has draggable parameters for its corner or center, size, and rounding.
• polygon, which is a sequence of vertices. The vertices may be exact positions or they may be rounded

off as chamfers or fillets. The positions and rounding are draggable parameters.
• mosaic, which is an indexed collection of draggable vertices grouped into adjacent tiles or tesserae.

The gap between tiles may be adjusted in code.
• figure, which is a sequence of nodes that explicitly trace out a shape. Supported nodes include straight

lines, arcs, quadratic and cubic Bézier curves, turtle geometry, mirrors across an axis, and tabs for gluing
together geometric nets. The parameters of most nodes are draggable.

• group, which is used to organize shapes into transformation hierarchies.

These shapes may be composed with union, intersection, and difference operators. They may be transformed
using scale, rotate, and translate modifiers, whose parameters are also draggable. Each shape may be filled or
stroked. A stroked shape may be solidified into a solid shape so that a cutting or plotting tool traces around
the stroke’s outer perimeter rather than along its skeleton.

The supported shapes are built on top of the primitives defined in the Scalable Vector Graphics standard.
Twoville targets this nearly universal protocol rather than communicating directly with fabrication machines.
Most browsers and design tools support SVG. Some tools, like Silhouette Studio, currently require a license
to import SVGs.

Direct and Indirect Manipulation
Some designs are driven by aesthetic feel and some by algorithmic contrivance. But this is a false dichotomy.
Twoville supports both modes of thinking with its bidirectional editor. The code interface facilitates algo-
rithmic expression. The drawing canvas facilitates aesthetic tweaking of a shape’s parameters. Edits made
in the code interface are applied to the canvas as soon as the user runs the program, and edits made in the
canvas are applied immediately to the code.

Shneiderman [7] in the 1980s identified four characteristics of technological systems that humans of all
skill levels enjoyed using:

• The content being manipulated has a persistent visual representation.
• Interaction is triggered by a physical action rather than a linguistic form.
• Feedback must be delivered quickly at each step of an interaction, and each step must be undoable.
• The system welcomes novice users with clear affordances but scaffolds them to advanced usage.

These characteristics lead to a style of interaction that Shneiderman called direct manipulation—in contrast
to the indirect manipulation of a code interface. There’s no reason that a single system can’t respond to both
direct and indirect manipulation. In fact, vector graphics editors commonly provide a direct visual interface
and indirect form inputs for precisely setting a shape’s parameters.

A few editors, including Cuttle [1], Sketch-n-Sketch [2], and Twoville, offer fully-featured code interfaces
for indirect manipulation. There are advantages to supporting arbitrary code. Variables emerge as a natural

Shaping with Code and Mouse in Twoville

605



vehicle for extracting parameters and sharing them between shapes. The code behind a design keeps the
design’s logic transparent and learnable. Given the liquidity of text, code can be shared easily in emails
and on the web. Loops repeat shapes across space. Common operations may be factored out to reusable
functions.

Code interfaces also present challenges for bidirectional interaction. When a handle is dragged on the
drawing canvas, the system must update the source code to reflect the new value of the parameter. That means
the system must maintain a mapping from the handle to the source code. In our initial prototype of Twoville,
we dispassionately overwrote the parameter value in the source code with a literal value derived from the
mouse position. Any complex formulae that the user had entered in the code would be wiped. This felt like
a violation, so we switched to preserving expression structures as much as possible. Now when a handle is
dragged, we consider its old value 𝑝 and compute its new value 𝑝′ from the mouse position. Then we inspect
the expression structure and update it according to its form. Our current algorithm recognizes and responds
to these four forms:

• 𝑝 = number. There is no precious structure to preserve, so the literal number is replaced with 𝑝′.
• 𝑝 = variable. The property gets its value from variable, on which other shapes may depend. So that all

dependent shapes will be updated, we recurse to update the assignment statement that gave variable its
value.

• 𝑝 = 𝑎 ⊕ 𝑏, where ⊕ is some invertible binary operation that we wish to preserve. We favor replacing
numeric operands, which feel more disposable. If 𝑏 is a literal number, we solve the new assignment
𝑝′ = 𝑎 ⊕ 𝑏′ for 𝑏′. If 𝑎 is a literal number, we solve 𝑝′ = 𝑎′ ⊕ 𝑏 for 𝑎′. If an operand is surrounded by
parentheses, we consider it locked and do not replace it. If an operand is a variable, we recurse on its
assignment.

• 𝑝 = 𝑓 (. . .). Operation 𝑓 is non-invertible or it didn’t have any manipulable operands. We preserve the
operation in its entirety and tack on an offset Δ to meet 𝑝′. We find Δ by solving 𝑝′ = 𝑓 (. . .) + Δ.

What value is computed for 𝑝′ depends on the property. If the property is an angle, 𝑝′ is derived from
the mouse’s angular position around a pivot point. If the property is a distance, 𝑝′ is derived by projecting
the mouse’s position along an axis. If the property is a position, 𝑝′ is derived from the mouse’s Cartesian
coordinates.

There are some challenges with bidirectional editing that we have yet to overcome. When a handle is
just one of many generated by a loop, dragging on it sometimes affects all parameters in a uniform manner.
For example, suppose we have generated a line of circles. Dragging one of them to a new position may
cause all of them to collapse together. Additionally, dragging on a handle for a multi-valued property can
lead to unpredictable behavior if the multiple values depend on a shared variable, as in the assignment
center = [x, x].

Workshop Description

Our workshop consists of two 45-minute design activities that we have successfully used with students in our
local schools. We have a third activity planned in case there’s extra time. All three activities get participants
drawing, coding, and producing a physical artifact using a vinyl cutter that we provide. Twoville is freely
available on the web, so we will either need a computer lab or participants will need to use their personal
laptops. We describe the three activities in detail.

Frankenshape
Our warmup activity is one that we have used frequently in short outreach events and with younger students.
The students learn to assemble composite shapes—frankenshapes—out of simple rectangles and circles, as

Johnson and Morris

606



(a) Graph paper sketch (b) Fabricated vinyl sticker

Figure 3: The first and last steps of designing a frankenshape. All workshop activities begin with an
unplugged activity like drawing or manipulating physical objects. Frankenshapes start as

drawings on graph paper. Only after the positions and sizes have been identified do students
head to Twoville. The output is a vinyl sticker.

shown in Figure 3b. This activity is meant to build on and reinforce the students’ prior knowledge of the
Cartesian coordinate system and geometric properties. We follow these steps:

1. The instructor projects a Cartesian grid onto a drawing surface and discusses how there are “𝑥-streets”
and “𝑦-streets“. A student chooses an origin, and from there the instructor numbers the streets so that
addresses can be communicated precisely.

2. The instructor draws an interesting composite shape out circles and rectangles atop the grid. Our routine
shapes include a cloud, a popsicle, and an animal ahead of indeterminate species.

3. Together the students and instructor identify the positions and sizes of each circle and rectangle,
reviewing the terminology that the students have usually learned previously.

4. The instructor demonstrates how the design is communicated to Twoville.
5. Each student draws their own design on a piece of graph paper and identifies the positions and sizes.
6. The student gets their drawing reviewed by the instructor and fixes any issues.
7. Once the drawing is in good order, the instructor grants the student access to a computer.
8. The student codes their design in Twoville and sends it to the instructor.
9. The instructor sends the SVG to a vinyl cutter and gives the fabricated sticker to the student.

One rule of all our activities is to that we don’t have students do their initial thinking at the computer.
Instead they start by drawing or arranging physical manipulatives. Computers give almost instantaneous
feedback, which diverts the students’ attention into a game of satisfying the machine. With drawings and
manipulatives, the students use their own senses to give themselves feedback at a measured pace. By the
time they get to the computer, the deeply cognitive work has already been done. Programming is then just a
translation of that work into a particular notation. In our experience, students don’t find coding so difficult
when it is separated from planning and measuring.

At the conclusion of this activity, we present some questions and challenges to the students. What do
you think a programmer does? What’s a design that we can’t make with just circles and rectangles? What

Shaping with Code and Mouse in Twoville

607



sort of command would Twoville need to support this design? In the next few days, find a frankenshape in
your life and reverse engineer it using Twoville.

Figure 4: The four possible tiles for making greeting cards. The student assembles these tiles into a knot,
translates the path into a Twoville program using turtle geometry, and then cuts or embroiders

the design.

Knot Mosaic
Our second activity builds on the popular exercise of assembling knot mosaics from a fixed palette of tiles [4].
We restrict ourselves to the four tiles shown in Figure 4, which offer all possible configurations of runs and
quarter turns. We ignore crossing order in order to produce a solid artifact. The students learn about
distances and angles as they translate the knot that they have assembled into turtle geometry instructions
using Twoville’s figure command. We follow these steps:

1. The instructor gives each student a set of tiles.
2. The instructor gives the students minimal instructions: assemble a single circuitous path, such that a

pen can trace it out without being lifted.
3. Students assemble their paths.
4. The instructor projects onto a drawing surface a simple knot with walks, turns, and crossings.
5. The students and instructor cooperatively measure the distances and angles of the path.
6. The instructor translates the example knot into the turtle geometry nodes available in Twoville’s figure

command. Figure 5 shows a radially symmetric knot generated with a repeat loop.
7. The students measure their own knots and show the instructor.
8. Once the knot is in good order, the instructor grants the student access to a computer.
9. The student codes their design in Twoville and sends it to the instructor.

10. The instructor applies the design to the front of a greeting card—by cutting or embroidering—and gives
the card to the student.

The four tiles constrain the style of knots that can be formed, which we’ve found to be appropriate for
young learners who sometimes get overwhelmed when measuring intricate knots. In a square mosaic, any
walk distance is exactly the number of tiles involved in the walk and any angle is the number of tiles involved
multiplied by 90 degrees. Furthermore, we do not expect the students to form or identify looping sequences
in their knots as we see in Figure 5.

At the conclusion of this activity, we present some questions and challenges to the students. What’s
the smallest set of tiles we’d need to make a knot? Imagine outlawing one of the tile of the smallest set but
allowing any number of the others. What knots could we make? Sum up all the angles used in your path.
What can we say about that sum for any circuit? Suppose we had given you hexagonal tiles instead of square
tiles. What might some of the tiles have looked like? What angles would be possible in the curl command?

Johnson and Morris

608



Figure 5: A knot—which happens to be the unknot—programmed as a four-fold repetition of a
walk-curl-walk-curl sequence.

Foundaround
In the unlikely event that we have additional time, our third activity is modeling a found object with Bézier
curves—a foundaround. Students learn about continuity and inflection points as they fit curves to the
perimeter of a flat object that has curved edges. We follow these steps:

Figure 6: A spider web made of rings of quadratic Bézier curves, with one selected for direct manipulation.

1. The instructor briefly discusses the material and aesthetic importance of curvature in industrial design
and shows some examples of logos and icons made from Bézier curves such as the one shown in
Figure 6.

2. The instructor issues a challenge for students to locate a flat shape with at least some curved edges that
they will model. Given the time constraints of the workshop, we will provide a collection of pre-found
objects.

3. The students trace or sketch the found object onto paper.

Shaping with Code and Mouse in Twoville

609



4. The instructor demonstrates in Twoville how the control points of a Bézier curve act like a black hole,
pulling a straight line segment into a curve. The instructor also demonstrates how curves switch from
bending inward to bending outward and offers some guidance on placing the curves’ vertices and control
points in accordance with these inflection points.

5. The students identify the approximate locations of the vertices and control points of their shape. Exact
coordinates are unnecessary.

6. The students take a photo of their found object and upload it as a raster in Twoville. A raster is a
rectangle of pixels.

7. The students add vertices and control points to a figure by clicking around the raster and dragging on
handles to fit the curve to the perimeter.

8. The instructor cuts the design into a sticker.

Because the students are not generating a new shape as they do in the previous two activities, this
activity has less algorithmic synthesis. In fact, the curve-fitting could just as easily be done in a normal vector
graphics editor that has no code interface. However, we believe that an explicit code representation better
reveals the mechanics of Bézier curves.

At the conclusion of this activity, we present some questions and challenges to the students. You’ve seen
Bézier curves with one or two control points. Could there be a curve with three control points? How does
adding more control points affect the curve? Why are they called quadratic and cubic curves? In the next
day, try making a circle in Twoville using Bézier curves.

Conclusions

We have introduced Twoville, a bidirectional editor for making two-dimensional designs. Twoville supports
both direct manipulation of the design through code and indirect manipulation through mouse interaction.
The two interfaces are synchronized so that changes in one appear in the other. The output of a Twoville
program is a scalable vector graphics file that is ready to be sent to the control software of a fabrication
device. We built Twoville in order to teach math and computer science and to support computational making
activities in after-school programs and summer camps for students in our community. Students leave our
activities with unplugged computational artifacts like vinyl stickers, T-shirts, embroidered greeting cards,
and acrylic and plywood sculptures. We have described three activities that we will use in our workshop.

References

[1] Cuttle. https://cuttle.xyz.
[2] B. Hempel, J. Lubin, and R. Chugh. “Sketch-n-Sketch: Output-Directed Programming for SVG.”

Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
pp. 281–292. https://doi.org/10.1145/3332165.3347925.

[3] C. Johnson and I. McCormack. “Computational Making via Bidirectional Parametric Modeling.”
Bridges Conference Proceedings, Aug. 2–3, 2021, pp. 359–362.
https://archive.bridgesmathart.org/2021/bridges2021-359.html.

[4] S. Lomonaco and L. Kauffman. “Quantum knots and mosaics.” Quantum Information Processing,
vol. 7, pp. 85–115. https://doi.org/10.1007/s11128-008-0076-7.

[5] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. 1980.
[6] Twoville. https://twoville.org.
[7] B. Shneiderman. “Direct Manipulation: A Step Beyond Programming Languages.” Computer, vol. 16,

no. 8, pp. 57-69, Aug. 1983.

Johnson and Morris

610

https://cuttle.xyz
https://doi.org/10.1145/3332165.3347925
https://archive.bridgesmathart.org/2021/bridges2021-359.html
https://doi.org/10.1007/s11128-008-0076-7
https://twoville.org

