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Abstract
We describe a new method of weaving a model of the Klein quartic, a highly symmetric, but abstract genus-3 surface
akin to a platonic polyhedron, with negatively-curved geometry, based on a tiling found by G. Westendorp [10]. The
Klein quartic cannot be realized in its fully symmetric form in three-dimensional space, but this model exhibits the
most rigid symmetry that is possible. With remarkably little time and material you can have a Klein quartic model of
your own!

Figure 1: The Klein quartic can be formed from a region of the hyperbolic plane with underlying *732
symmetry, shown at left, by joining like triangles on its boundary, or from the model at right,
which is tiled by heptagons and triangles and bounded by geodesics; abstractly we identify

opposite blue rings so that the colored strips continue. (At left, the highlighted pair of triangles
are joined as one, and correspond to the highlighted point on the photograph.)

The Klein Quartic

The Klein quartic has a rich history and can be described in many ways, touching many areas of mathematics,
as beautifully represented in The Eightfold Way, a collection of essays edited by Silvio Levy [6]. Models and
drawings of it date to its discovery. See [8, 9] for quilted and sculpted examples and much discussion.

The original representation of this surface is as a quartic, the solution set of a fourth-degree algebraic
equation in a particular abstract space.1 It happens that this solution set has genus-3 – it is a topologically

1Specifically, the solutions [𝑥, 𝑦, 𝑧] in complex projective 2-space to 𝑥3𝑦 + 𝑦3𝑧 + 𝑧3𝑥 = 0.
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equivalent to a three-holed donut. More that that, it has a rich set of 168 orientation-preserving symmetries,
the most possible for a surface of this genus. This symmetry group is rather famous; one of its names is
PSL(2, 7) and another is PSL(3, 2). We’ll call it 𝑄 here.

To the artist, discrete geometer or a low-dimensional topologist, the Klein quartic is most easily un-
derstood as a kind of regular polyhedral symmetry, not of the sphere, but as a tiling of an abstract genus-3
surface we’ll denote 𝑆.

The physical model at left in Figure 2 has much less symmetry, but topologically it has 24 heptagonal
facets, meeting three-to-a-vertex. Abstractly, if we may stretch and deform 𝑆, then any flag — any triple of a
coinciding vertex, edge and face — may be taken to any other by some topological homeomorphism of the
surface, and so this topological tiling is regular. Equally, we can describe the Klein quartic as a regular tiling
of a genus-3 surface by 56 triangles meeting in sevens. The two tilings are dual, with the same underlying
flags, and 𝑄 preserves the tilings and the handedness of the flags. The term “Klein quartic” might refer to
either of these tilings, the action of the symmetry group 𝑄 on 𝑆, or any of several other related objects. [2, 6]

In his paper [5] Klein constructs the {7, 3} tiling of the hyperbolic plane, formed by regular heptagons
with 120◦ vertex angles, or equally, its dual tiling by equilateral triangles meeting in sevens, both with
symmetry group denoted ∗732 [3]. He shows how to wrap these tilings onto 𝑆 symmetrically. The group 𝑄 is
a quotient of the orientation preserving symmetry group 732. The surface 𝑆 is the quotient of the hyperbolic
plane by the group 732/𝑄. Equivalently, we can assemble the surface by gluing together marked sides of the
polygon at left in Figure 1 in such a way that colored paths match up from one side to another, and triangles
on the boundary of the polygon that are colored in the same way are considered to actually be the same
triangle — a pair of such triangles is indicated. On the glued-up surface, the colored stripes are geodesics.
Eight heptagons zig-zag across each geodesic before it closes up into a loop, the “eight-fold way” of [6].

There are three geodesics of each color, all of the same length — at left in Figure 1, the three blue
geodesics are shown with different line-widths, corresponding to the three pairs of blue loops in the sculpture
at the right of the figure. In the photograph, the same triangle is marked as in the rendering at left, and from
there, you can walk around and verify that the structures are the same.

Interestingly, of the thirty-five ways to choose three of seven colors, only twenty-eight appear in the
Klein quartic. Seven triples do not appear, in a Fano plane of the colors: Each pair of colors is in exactly one
missing triple. Each triple that does appear appears twice, in opposite orientations. (Can you spot the other
blue-yellow-green triangles in Figure 1?)

We are attaching the sides of a 14-sided polygon producing a surface with one fourteen-sided face, seven
edges, and (checking carefully) two vertices, for an Euler characteristic of 1− 7+ 2 = −4. As this surface has
no boundary and is orientable, it has genus 3. We have thus decorated 𝑆 with a metric of constant negative
curvature, so that each heptagon is genuinely equilateral and equiangular, all preserved under the action of
the symmetry group 𝑄.

Physical models must deform this geometry but we can preserve some symmetry: The model at right in
Figure 2 has tetrahedral symmetry; the group 332 is a “subgroup” of 𝑄. (Just as 332 is a subgroup of 532, it
is not a “normal” subgroup of either — 532 ≈ 𝐴5 and 𝑄 are “simple”.) S. Matsumoto’s fabric model [8] has
a more abstract kind of tetrahedral symmetry, in the operations that preserve it.

We can also represent our genus-3 surface 𝑆 naturally in our space by cutting it open along three disjoint
non-separating curves. We may arrange these six newly cut-open boundaries symmetrically in space, along
the usual coordinate axes with matching boundaries opposite one another. In turn a surface formed from
a lattice of these units is a topological cover of the Klein quartic and separates space into two congruent
latticeworks. That surface is “nearly the same as”2 Coxeter’s infinite {6,4} and {4,6} honeycombs or the

2This surface is “nearly the same as” the others in the intuitive sense that you can morph space taking one to another, preserving
symmetry, not moving things very far. Formally, there is a small equivariant ambient isotopy taking one to the other.
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Schwarz P-surface [3]. (This geometry has been woven by Alisson Martin in [7], though without the abstract
additional symmetry. Also see Figure 3.)

At a glance it would not appear that twenty-four heptagons could be regularly and symmetrically placed
on this surface, but fortunately G. Westendorp shows us how on his website [10], recognizing that this gives
a rendering of the Klein quartic and the basis for a woven pattern.

Once in hand the example is easier to explain: 𝑄 has a subgroup isomorphic to 432 ≈ 𝐴4. In the coloring
of the woven Klein quartic (as can be verified by tracing one color of geodesic shown at left in Figure 1) there
are three geodesic loops of each color. This subgroup preserves one of those colors. Cutting along these
must produce boundaries that are geodesics in the physical model. Consequently they must be flush with the
boundary of the unit cell — they are loops. In In Figure 6, we show the result of cutting the same coloring
of 𝑆 along different colored triples of geodesic — the marked points correspond to the same point on 𝑆.

(a)

(b)

(c)

Figure 2: At left a model of the Klein quartic with tetrahedral symmetry, formed from twenty-four
heptagons meeting in threes, in eight colors. At right, controlling the surface curvature with the

weaving pattern: (a) positive curvature and pentagonal holes; (b) negative curvature with
heptagonal holes; (c) the kagome lattice with no curvature.

As has been beautifully noted before [1, 4, 7] traditional (Euclidean) basketry and caning patterns can
be adapted to produce surfaces of varying curvature (right, Figure 2). In the ancient Japanese kagome pattern,
strips of material are woven in triangular junctures to form hexagonal holes. With pentagonal holes, we have
positive curvature, the weaving of a sphere by six bands each at the equator of an icosadodecahedron. With
seven, we have negative curvature, and we can realize the pattern shown at left in Figure 1 in physical space.
(In the hyperbolic plane3, and so on any surface of constant negative curvature, the angle at which strips meet
is close to 58.057 degrees. There is enough “give” in the model that we may allow our strips to meet at a
convenient 60◦.)

On any woven surface, strips must lie along geodesics, at least to the extent that that is well-defined: any
bending in the strips must be perpendicular to their normal, and so the strips remain “straight” — the strips
can only follow straight paths in the underlying hyperbolic tiling.

How to Weave a Klein Quartic

Klein quartics may be woven at your choice of scale and materials: we anticipate larger, more permanent
renditions of this sculpure will be woven in the future. The Klein quartic sculpture in Figure 1 is designed

3This angle can be measured directly in Figure 1 or by numerically solving an equation derived from the hyperbolic law of
cosines.
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for groups of people to come together, have fun, assembling a surprising mathematical sculpture, as a kind
of communal mathematical performance art.

I made several larger plastic renderings in early 2024 that already have been assembled (and disassem-
bled) on multiple occasions, including at Centre international de rencontres mathemématiques (Luminé) and
the National Museum of Mathematics (New York). The models in Figure 3 were built by participants at the
fifteenth Gathering For Gardner in Atlanta February 24, 2024, and show how the Klein quartic might be
“unfurled” with many copies put together into a cubical grid, forming something like the famous Schwarz
P surface. (However, in order for the colors to actually work out, we need a double cover of this, with two
sculptures in each location of the grid!)

Those sculptures are about forty inches across; they are woven from 1/8th inch thick, 3 inch wide,
spray-painted polystyrene strips, cut from sheets sold as thermoplastic, and with holes drilled from a laser-cut
template. At this scale, in this material, these have a pretty bouncy feel but can hold themselves up. (A more
ambitious version, twice as large but from the same material, was unable to hold its weight.) Unassembled,
this version is lightweight, can be flatpacked and is easily shipped.

Figure 3: Multiple copies of the Klein quartic assembled at the fifteenth Gathering for Gardner, 2024.

BB C

A AC

A B A B A B A B

Figure 4: Templates, at top for the “rings”, middle for the “short strips”, and bottom for the “long strips”,
available in the Supplementary file of this paper.
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(a) (b) (c) (d)

Figure 5: Tips for constructing the model are described in the text.

At the workshop or at home, you will find that with remarkably little time and material you can have
a Klein quartic of your very own. In a workshop, colored paper strips and staplers will be provided for
participants to weave their own Klein Quartic.

Instructions

1. Begin with seven colored sheets of paper or cardstock. Scaling the templates in Figure 4 by 200% fits
US office paper well (the plastic sculptures were scaled by 800%), but their proportions will work at
any scale. A full set of all seven ways to cut open 𝑆, as in Figure 6, efficiently uses almost all of three
sheets of each of seven colors.

2. At top in Figure 4 is a template for the six “rings”, all of one color, that will bound the model. Cut strips
and form the rings by overlapping the left end of the template over the gray region on the right.

3. At middle of the figure is a template for “short strips” and at bottom is the template for “long strips”.
From each of the other six colors of paper, cut two short strips and two long strips, thirty strips all
together.

4. Dark gray regions of the template will pass under another strip; lighter gray regions will pass over. The
matching letters in the templates are described below.

5. As in Figure 5(a), begin by attaching four differently colored short strips to the inside of a ring, using
the template to measure their spacing, matching 𝐴 on the ring to 𝐴 on a strip.

6. However that ring is colored (say ABCD), attach the other short strips of the same colors to another ring
in the opposite order (DCBA) (Figure 5(b)). Then attach each of the two remaining colors to opposite
sides of two of the remaining rings, as shown. (In the photo, each strip is attached to only one ring.)

7. Next, attach the loose ends of the short strips to other rings, following two simple rules: the strips and
rings will form an octahedral structure, shown in Figure 5(c), with the short strips on the edges of this
underlying octahedron. Second, strips of the same color will be on opposite edges.

8. We now weave in the long strips. Each end 𝐵 of each long strip will weave over a 𝐵 on a ring, then pass
under a neighboring short strip (Figure 5(c)). A short and long strip meet at their middles 𝐶, the long
strip always over the short one. The rest of the weaving will follow.
In order to determine the color of each long strip (Figure 5(d)) note that each color of short strip meets
four of the rings. The other pair of rings will be connected by a pair of long strips in that color. Because
strips of the same color do not cross, this determines which way these strips must travel.
Though the weaving will end up as over-under-over-under, etc, it may not be so during its construction!
Determining which color to place next, and which way to weave each strip is a bit of a puzzle, but soon
will become natural.

9. Finally, the surface 𝑆 will not be complete until we glue opposite rings to one another, at least in our
imaginations. Looking at opposite rings, we can see that colors continue on through the gluing, and
that opposite rings are attached with a one-quarter turn twist, which we can label with arrows or letters.
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Figure 6: These four paper models show the same arrangement of colors pattern on 𝑆, cut open along
different colors of strip. The blue spots are the same location on 𝑆, the red-pink-blue triangle.
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