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Abstract

Which surfaces can be realized with two-dimensional faces of the five-dimensional cube (the penteract)? How can
we visualize them? In recent work, Aveni, Govc, and Roldán show that there exist 2690 connected closed cubical
surfaces up to isomorphism in the 5-cube. They give a classification in terms of their genus 𝑔 for closed orientable
cubical surfaces, and their demigenus 𝑘 for a closed non-orientable cubical surface. In this paper we present the
definition of a cubical surface and we visualize the projection to R3 of a torus, a genus two torus, the projective plane,
and the Klein bottle. We use reinforcement learning techniques to obtain configurations optimized for 3D-printing.

Introduction

In Bridges 2023 [2], Estévez, Roldán, and Segerman presented various visualizations of 3D-printed represen-
tations of closed connected orientable cubical surfaces embedded in R3 on the two dimensional faces of the
tesseract. These representatives are homeomorphic to either a sphere, a torus or two disconnected spheres;
in fact, the maximum genus achievable for the tesseract is one. For a five-dimensional cube, often called a
penteract, doing an exhaustive computational search, Aveni, Govc, and Roldán [1] found all orientable and
non-orientable connected closed surfaces. Within these surfaces, by a result from Schulz [3], the maximum
possible genus is five and the maximum possible demigenus is eight. They have also classified all closed
surfaces in 2690 different isomorphism types.

Here, we have selected some of these surfaces to find good embeddings for visualizing them in R3 and
for 3D-printing them: the genus 1 torus, the genus 2 torus, the projective plane, and the Klein Bottle. We
work with non-orientable cubical surfaces, therefore we must deal with self intersections of its faces; in
particular, we want to minimize them. After performing the perspective projection to 3D space, we assign
a fix width (or radius) 𝑤 to all of its edges, resulting on cylindrical segments in 3D space. An edge overlap
is a pair of cylindrical segments that intersect in 3D space. In order to have the best possible embedding
for 3D printing and visualization of these surfaces, we implement a Reinforcement Learning (RL) algorithm
that explores suitable three-dimensional embeddings which minimize self intersections of its faces and edge
crossings for a fixed edge width 𝑤.

The rest of the paper is organized as follows. In Section , we introduce the notation and basic definitions
of cubical surfaces in the penteract. In Section we present some results and 3D-models of the configurations
that the algorithm found for our selected surfaces, starting from particular initial configurations. In Section ,
we describe in detail the implementation of the RL algorithm.

Cubical Surfaces in the Penteract

We denote the five-dimensional unit cube by 𝑄5 = [0, 1]5, and its set of vertices by 𝑄5
0. Each vertex of 𝑄5

can be represented by an element of the set of all five-tuples with binary entries {0, 1}5. We denote by 𝑄5
1 the

one-dimensional skeleton of 𝑄5, that is, the set of its vertices 𝑣 and edges 𝑒. We observe that 𝑄5
1 is the graph
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with vertex set 𝑄5
0 with an edge between two vertices if and only if they differ in exactly one coordinate.

The cardinality of the set of faces 𝑓 containing an edge 𝑒 (resp. a vertex 𝑣) is denoted by 𝐹𝑒 (resp. 𝐹𝑣) and
similarly the cardinality of the set of edges 𝑒 containing a vertex 𝑣 is denoted by 𝐸𝑣 . Similarly, 𝑄5

2 denotes
the two-dimensional skeleton of 𝑄5, which consists of the set of vertices 𝑄5

0, the one-dimensional skeleton
𝑄5

1, and all its two-dimensional faces 𝑓 . We can continue this construction up to the penteract 𝑄5
5 itself, and

name the elements of all the preceding sets the cells of 𝑄5. We refer to a subset of 𝑄𝑛
2 as a two-dimensional

cubical complex, which we will denote by C. We denote its set of vertices, edges and faces by C0, C1, and C2
respectively. The vertex figure F𝑣 of a vertex 𝑣 is the graph whose nodes are the edges in C1 having 𝑣 as an
endpoint and where two nodes 𝑒, 𝑒′ ∈ 𝐶1 are joined by an edge if and only if there is a face 𝑓 ∈ C2 with 𝑒, 𝑒′

as two of its edges. A closed cubical surface is a two-dimensional cubical complex C in which every point
has an open neighborhood homeomorphic to an open disk. This condition is equivalent to asking C to fulfill
the following conditions: Every edge is shared by exactly two faces, i.e. for all 𝑒 ∈ C1, 𝐹𝑒 = 2, and the vertex
figure F𝑣 of any vertex 𝑣 ∈ C0 is a cyclic graph.

Embeddings of Cubical Surfaces

For the following cubical surfaces we are using the results found by Aveni, Govc and Roldán [1], therefore we
know that we are using the minimum number of faces needed for realizing these orientable and non-orientable
surfaces.

Orientable Surfaces
In Figure 1 (a) and (b) (resp. (c) and (d)) we present an embedding of a torus (resp. genus two torus) whose
initial embedding had 19 (resp. 19) edge overlaps and 6 (resp. 33) face intersections. Our RL algorithm
found embeddings with zero edge overlaps for both and zero (resp. 11) face intersections.

(a) Genus 1 torus (b) Face intersections: 0 (c) Genus 2 torus (d) Face intersections: 11

Figure 1: Orientable cubical surfaces. 3D models can be found in the supplementary files.

Non-Orientable Surfaces
In Figure 2 (resp. Figure 3), we present an embedding of a cubical surface homeomorphic to the projective
plane (resp. Klein Bottle), whose initial embedding had 19 (resp. 19) edge overlaps and 13 (resp. 9)
face intersections. Our RL algorithm lowered the intersections to only three face intersections and zero
edge overlaps for both of them. In Figure 3a, we give an embedding of the Klein Bottle with more than 3
intersections, emphasizing two Möbius strips that are subcomplexes of this surface. We invite the reader to
count the number of intersections using our 3D model https://skfb.ly/oRB7H. Our projective plane and Klein
bottle each have two cross-cap singularities. We are currently working on modifying our code to search for
immersions without these singularities.
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(a) Face intersections: 3 (b) Projective plane 3D print (c) Projective plane 3D print

Figure 2: A cubical surface homeomorphic to a Projective Plane. 3D model can be found in supplementary
files.

(a) Face intersections > 3. (b) Klein Bottle & Möbius strip (c) Klein Bottle 3D print

Figure 3: A cubical surface homeomorphic to a Klein Bottle. 3D model can be found in supplementary files.

Using Reinforcement Learning to Minimize Face Intersections and Edge Overlaps

The embedding of the cubical complex C in R3 is parameterized by a vector 𝑠𝑡 = (𝑑5, 𝑑4, 𝜙1, · · · , 𝜙10) ∈ R12

at time 𝑡. We call 𝑠𝑡 a state. The value 𝑑5 (resp. 𝑑4) is the distance from the camera point to the origin for
the perspective projection 𝑝𝑟5(𝑑5) : R5 → R4 (resp. 𝑝𝑟4(𝑑4) : R4 → R3) in five (resp. four)-dimensional
space. When applying perspective projection in five (resp. four)-dimensional space, we fix the distance
from the origin to the projection hyperplane to be 1 (resp. 10), and only vary 𝑑5 and 𝑑4. The values
𝜙𝑖 ∈ [0, 2𝜋), (1 ≤ 𝑖 ≤ 10) are the ten possible angles (one for each pair of axes) on which the penteract 𝑄5

and C can be rotated around the origin in R5.
We call the set S of states, the state space, and denote the initial state by 𝑠0 ∈ S. The RL algorithm

to which we refer simply as the agent can perform one of the possible actions in the action set A :=
{𝛿𝑒0,−𝛿𝑒0, 𝛿𝑒1,−𝛿𝑒1, 𝜖𝑒2,−𝜖𝑒2, · · · , 𝜖𝑒11,−𝜖𝑒11}, where the 𝑒 𝑗 ∈ R12 are vectors whose 𝑗 th coordinate is
1 and 0 elsewhere, and 𝛿, 𝜖 ∈ R are positive real numbers defining the step length. After some testing we
set these to 𝛿 = 0.5 and 𝜖 = 𝜋/180. An action 𝑎 ∈ A is also a vector in R12. Given a state 𝑠𝑡 and an action
𝑎, we get the state 𝑠𝑡+1 = 𝑠𝑡 + 𝑎. The parameter 𝛿 affects the distances 𝑑5 and 𝑑4 while the parameter 𝜖
affects the rotation angles 𝜙𝑖 , (1 ≤ 𝑖 ≤ 10). Therefore, an action can apply either a small five-dimensional
rotation or move the five or four- dimensional cameras to obtain a better embedding. A reward function
𝑅 : S × A → R gives feedback to the agent depending on whether the action taken favors a certain task.
We explain the construction of our reward functions in Sections and for different tasks. The RL algorithm
takes these reward functions and produces a probability distribution on the set of actions A, conditional on
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the current state. Given an initial state 𝑠0 in S, the RL algorithm applies a set of actions that take the agent
to better and better states. For further details, see [4].

Minimizing the number of intersecting faces

For a pair of distinct faces ( 𝑓 , 𝑓 ′) ∈
(C2

2
)
, after performing some five-dimensional rotation, consider their

perspective projections 𝑝𝑟 (𝑑5, 𝑑4, 𝑓 ) and 𝑝𝑟 (𝑑5, 𝑑4, 𝑓
′) in R3. If these projections intersect, they do so

transversely (in a point or a line) or they overlap (we don’t consider faces sharing an edge as intersecting). At
the state 𝑠𝑡 ∈ S the number of face intersections running through all pairs ( 𝑓 , 𝑓 ′) is denoted by ΣC (𝑠𝑡 ). For
most of our cubical surfaces we don’t know the minimum number of face intersections, but we can propose a
minimum ΣCprop and expect the algorithm to find a state 𝑠𝑡 such that ΣC (𝑠𝑡 ) ≤ ΣCprop. The reward function

𝑅1(𝑠𝑡 , 𝑎𝑡 ) :=

{
10 ∗ (1 − ΣC (𝑠𝑡 + 𝑎𝑡 ) + ΣCprop) if ΣC (𝑠𝑡 + 𝑎𝑡 ) ≤ ΣCprop
ΣC (𝑠𝑡+𝑎𝑡 )−ΣC (𝑠𝑡 )

ΣC (𝑠𝑡 ) if ΣC (𝑠𝑡 + 𝑎𝑡 ) > ΣCprop,

will reward the agent when the action 𝑎𝑡 reduces ΣC (𝑠𝑡 + 𝑎𝑡 ) with respect to ΣC (𝑠𝑡 ).

Minimizing edge overlaps for 3D-printing

For a pair of distinct edges (𝑒, 𝑒′) ∈
(C1

2
)
, after performing some five-dimensional rotation, consider their

perspective projections 𝑝𝑟 (𝑑5, 𝑑4, 𝑒) and 𝑝𝑟 (𝑑5, 𝑑4, 𝑒
′) in R3. To 3D-print the three-dimensional projection

of the cubical surface we assign a constant width 𝑟 to all of the projected edges. Each pair of projected edges
can overlap with each other at a given state 𝑠𝑡 ∈ S if the perpendicular line segment 𝐿𝑒,𝑒′ (𝑠𝑡 ) connecting
them has magnitude |𝐿𝑒,𝑒′ (𝑠𝑡 ) | < 2𝑟 . The number of overlapping edges at a state 𝑠𝑡 ∈ S is denoted by
𝑜𝑤 (𝑠𝑡 ). The reward function

𝑅2(𝑠𝑡 , 𝑎𝑡 ) :=


10 ∗ (1 − ΣC (𝑠𝑡 + 𝑎𝑡 ) + ΣCprop) if 𝑜(𝑠𝑡 ) = 0 and ΣC (𝑠𝑡 + 𝑎𝑡 ) ≤ ΣCprop
𝑜(𝑠𝑡+𝑎𝑡 )−𝑜 (𝑠𝑡 )

𝑜 (𝑠𝑡 ) if 𝑜(𝑠𝑡 ) ≠ 0 and ΣC (𝑠𝑡 + 𝑎𝑡 ) ≤ ΣCprop

0 if ΣC (𝑠𝑡 + 𝑎𝑡 ) > ΣCprop,

will reward the algorithm when the action 𝑎𝑡 reduces 𝑜𝑤 (𝑠𝑡 + 𝑎𝑡 ) with respect to 𝑜𝑤 (𝑠0) if the number
ΣCprop is achieved or improved. We prevent the agent from lowering 𝑜(𝑠𝑡 ) simply by decreasing the
parameters 𝑑5, 𝑑4 because we want the width 𝑟 not to be too small with respect to the final size of the
projection for 3D printing purposes. At a state 𝑠𝑡 ∈ S, we consider 𝐿 (𝑠𝑡 ) :=

∑
(𝑒,𝑒′ ) ∈(C1

2 ) |𝐿𝑒,𝑒′ (𝑠𝑡 ) |. The

function 𝑅3(𝑠𝑡 , 𝑎𝑡 ) := 𝐿 (𝑠𝑡 )−𝐿 (𝑠𝑡+𝑎𝑡 )
𝐿 (𝑠𝑡 ) , will reward the agent for reducing 𝐿 (𝑠𝑡 ). We take 𝑅4(𝑠𝑡 , 𝑎𝑡 ) := 1 if

𝐿 (𝑠𝑡 ) < min({𝐿 (𝑠𝑖)0≤𝑖≤𝑡−1}) and 𝑅4(𝑠𝑡 , 𝑎𝑡 ) := 0 otherwise. We take then 𝑅 := 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4.
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