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Abstract

Girih patterns have been documented in the Orient since the early Middle Ages. They were generally constructed
using geometric stencils. After discussing the quasiperiodic Penrose tilings from the 1970s and the corresponding
covering models since the 1990s, appropriate Girih stencils were incorporated into a Penrose rhombus tiling.
Subsequently, the resulting quasiperiodic Girih pattern was inserted into an Ammann grid-based covering cell. A
very close agreement was found. Furthermore, it is shown that the Girih pattern is interwoven from closed knots
of three different types, each of which has a one-to-one relationship with a single tile of the quasiperiodic HBS
tiling. The Girih knots are discussed from different angles and illustrated in detail.

Historical Introduction into Girih Patterns and Penrose Tilings

The geometric Girih patterns became established as decorations on religious buildings in the Middle East
from the turn of the first  millennium. Figure 1(a) shows a  Girih stone relief  from the  Hunat Hatun
Complex in Kayseri, Turkey, built in the early 13th century [16] (Photo: courtesy David Wade). The two
highlighted shapes GR and GH, named after a rhombus and a hexagon whose internal angles are multiples
of 36 degrees, represent the stencils with which the stonemason transferred the ornamentation outlined on
the stencils onto the stone. Most of these patterns are periodic or adapted to the shape of the building. 

Figure 1:  (a) Girih stone relief  from the Hunat Hatun complex in Kayseri, Turkey. (b) Kepler's
copperplate Aa. (c) Penrose pentagon tiling PPT. (d) Penrose rhombus tiling P3 derived from the PPT.
(e) Rhombus tiling with cartwheel C3. The Figures 1(c-e) and the Figures 2-8 are made by the author.

The Penrose tiles were developed by Roger Penrose (*1931) in the 1970s to solve a mathematical tiling
problem. He was inspired by the  copperplate Aa [9] from Johannes Kepler (1571–1630). The original
image (Figure 1(b), Photo: Université de Strasbourg) shows a pattern consisting in its central area of tiles
with five-fold rotational symmetry,  i.e.  regular pentagons,  decagons and pentagrams.  Kepler used the
example of the inevitably arising coupled decagons to show that a five-fold symmetry cannot exist in a
periodic pattern. Penrose filled each single decagon of the Aa printing with three pentagons, one boat (a
star with two missing spikes) and two diamonds (skinny rhombs) and let the coupled decagons overlap at
a common diamond (Figure 1(c)). This tiling is known today as the Penrose pentagon tiling (PPT or P1).
A few years later Penrose derived two further tilings from the PPT, the kite and dart tiling (P2) and the
rhombus tiling (P3). The P3 tiling has only two proto-tiles, the thick rhombus R (acute angle 72 degrees)
and the  skinny rhombus Rs (acute angle 36 degrees). Figure 1(d) shows the equivalence relation of the
PPT to the P3 tiling. The shape in the center of the P3 tiling in Figure 1(e) has an outline with ten-fold
symmetry, which is absent in the inner structure. This arrangement is called the cartwheel C3. 
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Specific Insights into Penrose Tilings, Ammann Bars and Associated Covering Models

Penrose developed two different rules for his tiles [11], which prevent periodic constellations and enforce
quasiperiodicity, a prerequisite for the realization of a structural five-fold rotational symmetry.  While the
matching rules act locally, the substitution rules are global constructions. Both rules ensure that there are
centers with five-fold rotational symmetry with different local ranges that are evenly distributed within a
quasiperiodic (approximately periodic) arrangement. 

Matching Rules for Penrose Tiles and Covering Rules for Overlapping Quasi-Unit Cells
The matching rules prohibit edge-to-edge constellations of tiles that would allow periodicity. In the case
of the Penrose rhombs in Figure 2(a),  Ammann line segments are used as edge markers that guarantee
quasiperiodicity [1][7].  The lines follow the path of a billiard ball  entering and leaving the rhombus,
perpendicular to a rhombus edge near an acute angle. In permissible arrangements, the Ammann line
segments are straight lines and occur in five parallel families as shown in Figure 2(b). The space between
two parallel Ammann lines is commonly called an Ammann bar. There are two types of Ammann bars.
They are named after the intervals L (long) or S (short), which give their thickness. The ratio L/S is the
Golden Ratio τ = (√5+1)/2. Geometrically: τ is the ratio of the diagonal of a pentagon to its edge length.

Figure 2: Matching rules: (a) Rhombs with Ammann line segments in permitted edge-to-edge relation.
(b) Center: Fulfillment of the matching rules with continuous Ammann lines. Above: Incompleteness of
the rules. (c) Gummelt-decagon P with three ochre subsets M and highlighted equivalent rhombus R.

The continuations of the line segments in the blue/ochre part in Figure 2(b) satisfy the matching rules. But
the matching rules are incomplete. This means that following these rules does not protect against dead
ends when puzzling tiles freely (Figure 2(b) above). The root cause is a violation of the quasiperiodic L-S
sequence, which does not allow three consecutive L-bars. A more tricky case is illustrated in [6].

The sensational discovery of quasicrystals with five-fold rotational symmetry by Daniel Shechtman
in 1982 [15] intensified the search for a  quasiperiodic unit  cell,  comparable to  unit cells in periodic
crystals. The Penrose tilings have the disadvantage that they have at least two different cells. One of the
first  depictions  of a  quasi-unit  cell can be found in Robert  Ammann [1,  p.  23],  where  he shows an
arrangement of twelve identical octagonal cells that overlap in two different ways without changing their
tile structure on the inside. See also [2] and [4]. The Gummelt-decagon P in Figure 2(c) is a decagonal
quasi-unit cell introduced in 1996 [8].  P has an equivalent relationship to the highlighted thick Penrose
rhombus R. Consequently, the center Z and the top corner T of the decagon P can be transferred to the
thick rhombus  R.  The  covering rules of P require that the three ochre  subsets M must be completely
covered by the subsets M of overlapping cells [8][14].  The construction of P  is based on the cartwheel C3

(see Figure 1(e) and 2(b)). Unfortunately, the covering rules of  P have the same incompleteness as the
matching rules of the Penrose tiles. Nevertheless, the concepts of the quasi-unit cells are very important.

Gaenshirt

156



Substitution Rules for the Penrose Rhombus Tiling and for the Correlating Ammann Bars

During substitution, suitable building blocks are replaced by a specific arrangement of smaller
copies. Tilings generated by substitution always fulfill the matching rules. Thus, substitution is the basis
of all Penrose tilings. It reveals the hierarchical character of the tile order and makes it possible to create
very large, error-free tile structures. In the following, the substitutions of Penrose rhombs and Ammann
lines are described in detail and are illustrated in Figure 3(a-e). Finally, it is shown that a  self-similar
Ammann subgrid can be derived from the third step in the substitution of Ammann bars.

Figure 3: Substitution rules: (a) Thick rhombus Rq with q-lines and Ammann bars. (b) First substitution
given by the orientation arrows. (c) Second substitution. (d) Third substitution with gapless decagon C3.

(e) Quasi-cell Q with the elementary trapezoid Tel. (a-e) Substitution of the horizontal Amman lines.

The thick rhombus Rq in Figure 3(a) has five fixed black q-lines, which are arranged in the same way as
the red lines in Figure 2(a). The subscript  q refers to the fixed size of  Rq which is determined by the
equivalent relationship of  Rq to the grid-based  quasi-cell Q  (Figure 3(e)). The sketches in Figure 3(a)
above show how the alternative position of a second horizontal  q-line depends on the constellations of
neighboring rhombs. The orientation of Rq is marked by a yellow arrow pointing from Zq to Tq. The five
thick rhombs in Figure 3(b) are scaled down with the substitution factor 1/τ and are then transformed
according to the orientation arrows. Together with the two additional ochre skinny rhombs, they represent
the first substitution. The identically formed cartwheel  C1 is a tile-based quasi-unit cell. The undefined
grey areas complement  C1 to form a decagon.  The two horizontal  blue Ammann lines of  C1 are not
congruent with the black Ammann line (q-line) from Rq in  Figure 3(a). The second substitution in Figure
3(c) is an iteration of the first. Here C1 is contracted and transformed according to the orientation arrows
in Figure 3(b). The green Ammann lines are neither congruent with the blue Ammann lines of  C1, nor
with the red r-lines in Figure 3(d). The trapezoidal third substitution in Figure 3(d) is the second iteration
of the first substitution and contains the gapless cartwheel decagon C3, which is made by reduced rhombs
Rr = Rq/τ3 and Rrs = Rqs/τ3 (the index r stands for “reduced” and s for “skinny”). Through the magnifier
between the Figures 3(d) and 3(e) it can be obtained that the horizontal black q-line of the thick rhombus
Rq is congruent with the red r-line between two neighboring L-bars. The blue elementary trapezoid Tel in
Figure 3(e) shows that this is also true for the other four q-lines. This means that each q-line is an r-line of
higher level, since the Lq- and Sq-bars contain integer numbers of L- and S-bars. Because of this partial
congruence, the three-step-substitution is called the concordant substitution of Ammann bars [3], written
as: Lq → L S L S L and Sq → L S L. The substitution factor is 1/τ3. It follows that the r-line grid (L-S grid)
is a self-similar subgrid of a q-line grid (Lq-Sq grid). 

Overlapping Quasi-Cells Q as the Basic Building Blocks of a Growth Algorithm
The Quasiperiodic Succession Algorithm, published in 2007 [3], is a growth algorithm [3][4][5]. It works
locally like the matching rules, but just like the substitution rules, it generates a very large error-free
cartwheel-type tiling Cn by controlled overlaps of quasi-cells Q that are based on the Ammann grid (see
Figure 3(e)). Inside Q is the elementary trapezoid Tel which, because Tel is a quasi-unit cell, completely
covers the plane in regular arrangements. However, as Q is larger than Tel, C3 and P, it has an area outside
Tel that is only defined when Q is completely covered by other cells. Therefore Q is called a quasi-cell and
not a quasi-unit cell! The Ammann grid of Q has a strong correspondence to a quasiperiodically modified
Girih pattern, which will be developed in the following section.
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A Medieval Islamic Girih Pattern from Kayseri and its Quasiperiodic Modification

In 2007, P. J. Lu and P. J. Steinhardt published one of the first articles on the relationship between Islamic
Girih patterns and Penrose tilings [10]. Among the numerous articles from subsequent years on this topic,
I would like to highlight a 2022 paper by J. E. Padilla [12], in which she demonstrates how traditional
decagonal Islamic motifs can be incorporated into a Penrose pentagon tiling PPT (see Figure 1(c)). Please
also note the references therein, which lead to further interesting articles on this topic.

The motif that gave the inspiration for the present work is a Girih stone relief from the Hunat Hatun
Complex in Kayseri, Turkey, built in the 13th century [16]. The relief is the lateral decoration of a portal.
The motif  on the relief  strip  is  periodic,  as  can be seen from the vertically repeating green and red
sequences in Figure 4(a). This topic is discussed in [13] (in German). See also the Kayseri pdf in [5].

Figure 4:  (a) Left: Photo of the ancient periodic Kayseri Girih pattern with Girih stencils superimposed.
Right: Girih pattern with two periods. (b) Left: Girih stencils G. Right: Penrose rhombs Rr and Rrs with
incorporated Girih stencils. (c) Quasiperiodic Girih pattern with inserted detail from the original relief.

(d) Above: Red Girih pentagon with inserted detail from the original. Below: Sketch of Figure 4(c).

In the left part of Figure 4(a), two types of historical Girih stencils are superimposed on the photo of the
original relief. One type has a rhombic shape (GR), the other type has the shape of an elongated hexagon
(GH). The right part of Figure 4(a) shows four unit cells of a similar periodic Girih pattern. This pattern
has the same vertical period as the Kayseri pattern, but there is also a horizontal period, so the pattern can
be extended as desired. In addition, a third historical Girih stencil is used (GB), which has the shape of a
bow tie. The three stencil types are shown separately on the left side of Figure 4(b).

On the right side of Figure 4(b), the Girih stencils are fitted into the thick rhombus Rr and the skinny
rhombus  Rrs.  Each thick rhombus contains one-fifth of a closed red Girih pentagon, and each skinny
rhombus contains two-fifths of it. Figure 4(c) shows an arrangement of nine Girih-patterned rhombs. In
its center a section of the original periodic stone relief is inserted (rotated 90 degrees clockwise), without
contradicting the quasiperiodic pattern. In Figure 4(d) above, another section of the original relief is fitted
into one of the numerous red Girih pentagons. Below there is a reduced sketch of the pattern shown in
Figure 4(c) to clarify the rhombus arrangement behind the photo inserted there.

We can note that the quasiperiodic Girih pattern in Figure 4(c) is very similar to the original relief
and differs from it mainly by the absence of the periodic pattern repetition and by the additional existence
of pentagon twins (Figure 4(b) below). These twins, induced by the bow-tie stencils GB, can also be seen
in the periodic pattern on the right side of Figure 4(a). There, however, the pentagon twins have only two
different alignments, whereas in the quasiperiodic pattern in Figure 4(c) they appear in each of the five
possible  orientations.  An  approximately  uniform distribution  of  the  different  orientations  of  shapes
without their own five-fold rotational symmetry is an essential characteristic of a structural five- or ten-
fold symmetry, which can also be found in naturally grown quasicrystalline nuclear structures.
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The Correlation of the Modified Girih Pattern with the Ammann Grid of the Quasi-Cell Q

Figure 5(a) shows the quasi-cell Q with the five black q-lines, that are firmly connected to Rq, Tel and Q.
The light blue rhombus Rq thus has an equivalence relation to Q. The five red twin-scales I control the
growth process of the overlapping quasi-cells Q. The twin-scales are delimited by red r-lines. That makes
it clear that the Ammann grid is the basis of the growth algorithm. The five scale-values of a cell Q are
transferred to the twin-scales I of all possible overlapping cells. Each overlap in which this results in five
valid values is permissible. More information on the growth algorithm can be found in the supplement.  

Figure 5: (a) Quasi-cell Q with five red twin-scales and five q-lines. (b) Q with Girih pattern and three
grey flipping worms. (c) Q with three distinct Girih knot types H, S and B. (d) The five status types of Q.

Figure 5(b) shows the correspondence between the quasiperiodic Girih pattern and the Ammann grid of
the quasi-cell Q. The pattern is generated by replacing the rhombus Rq with the reduced rhombs Rr and Rrs

of the third substitution (Figure 3(d)). These rhombs are in turn replaced by a Girih pattern fitted into the
reduced rhombs, as shown in Figure 4(b). The correspondence between the Girih pattern and the Ammann
grid is very close. Ammann lines which represent structural elements of Q are highlighted in yellow here.
Three quarters of each r- or q-line correspond to rectilinear segments of the Girih pattern! The rhombus
positions in the three grey worms are undefined as long as no cell overlap has taken place. The two
elongated hexagons next to the lower worm show that the horizontal red r-line changes the dashed variant
when the rhombs are flipped. Consequently, the corresponding black q-line also changes its position from
an edge of Tel to a parallel edge of Q or vice versa (see also Figure 3(e) below).

  In Figure 5(c), the first alternative q-line lies on the base of Tel. The second alternative q-line is on the
right leg of  Tel. The third alternative  q-line lies on the edge of  Q which is parallel to the left leg of  Tel.
These three q-lines define the entire Girih pattern within the quasi-cell Q! Surprisingly, three closed Girih
knots can now be found, which become visible through different coloring (The term "Girih knot" here
refers to a closed (mathematical) knot within the Girih wickerwork). Each knot has a relationship to a
geometric tile in the background: the yellow knot to a hexagon H, the green knot to a boat B and the blue
knot to a star S. These three tiles are the proto-tiles of the HBS tiling [14]. Please note: the boat and the
star of the HBS tiling have another shape than the skinny versions of the PPT (see Figure 1(c)).

Figure 5(d) shows the five status types of Q. Mathematically, eight (23) types would be possible, but
three of them lead to contradictions. The types are named in tile order from left (yellow) to bottom (blue)
to right (green). Consequently, the status type in Figure 5(c) is denoted as the H-S-B type of Q.
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The HBS Tiles Created by Overlaps of C1 and the Girih Knots Created by Overlaps of Tel

Figure  6(a-c)  shows  that  the  HBS-tiles  can  be  easily  composed  of  Penrose  rhombs  by  overlapping
cartwheels C1 (see Figure 3(b)). In Figure 6(a) the coverage areas are the thick rhombs, labeled with H.
Together with their two neighboring skinny rhombs they form the yellow and the two green hexagons H.
In Figure 6(b), the covered rhombus (B) forms the green boat B together with one skinny and two thick
rhombs. In Figure 6(c), the covered rhombus (S) and four thick rhombs form the blue star S.

 Figure 6: Generation of HBS tiles by C1: (a) H tile, (b) B tile, (c) S tile. Generation of Girih knots by Tel:
(d) H knot, (e) B knot, (f) S knot. (g) HBS tiling in a cartwheel arrangement. (h) Decorated HBS tiles.

In Figure 6(d-f), the three Girih knots are generated by the same coverings as the HBS tiles before, except
that now the trapezoids Tel are overlapped and mathematical terms are used to describe them. The yellow
H knot is part of the overlapping Girih structures of the trapezoids  id and  h1

-1 (id). The green  H knot
shows the correlation of the Girih structure of the trapezoid id with the yellow r-line grid of the trapezoid
h1  (id). Figure 6(e) illustrates the overlap of the trapezoid id with h2 (id). Please compare: While the SL
flip type in Figure 6(d) creates the green H knot, the inverse LS flip type in Figure 6(e) creates the green
B knot! The overlap of the trapezoid id with h5 (id) in Figure 6(f) creates the blue S knot. The id positions
of  Tel and  C1 in the complex plane ⸿ with  Zor at  the origin allow the mathematical definition of the
transformations hi (id) and their inverses hi

-1 (id), with i = {1, 2, 3, 4, 5}. For details see [8] p. 7.

  Figure 6(g) shows an HBS tiling in a C3 cartwheel arrangement. The colors are chosen so that same
colors do not touch at all, not even across corners. Corresponding Girih knots in similar colors can be
seen in Figure 8 (please note the cartwheel center in the lower middle of Figure 8). In Figure 6(h), the
HBS tiles are composed of reduced rhombs Rr and Rrs (see Figure 5(d)) decorated with yellow r-lines and
red Girih pentagons. The highlighted sections indicate that an S tile contains a B tile and a B tile contains
an H tile. The white dots are the centers of the local five-fold rotational symmetry (compare Figure 8).
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Knot Components as Basic Building Blocks of the Three Girih Knot Types

To understand how the Girih knots create a uniform pattern, the components of each knot must be studied.
In Figure 7(a), the H knot is shown against the background of a hexagon H consisting of one thick and
two skinny rhombs. The dendritic Girih component, here colored black, consists of five identical Girih
meanders interwoven into a five-fold rotational symmetry. Eight of its ten ends are connected by four
small loops (blue and yellow) and two ends are connected by one large loop (green). In Figure 7(b), two
of the small loops are removed together with the corresponding skinny rhombus. In Figure 7(c), two thick
rhombs are fitted into the resulting gap. The associated large loops create a B knot! An S knot is formed
when all four small loops in Figure 7(a) are replaced by four large loops. In Figure 7(d), another skinny
rhombus is added to the right of the created  B knot. The two corresponding small loops (yellow and
green) complete the Girih structure between the two centers with five-fold symmetry (white dots).

Figure 7: (a) Components of the H knot. (b) Pruned H knot. (c) Components of the B knot. (d) B knot
with skinny rhombus on the right side including corresponding loops and second center of symmetry. 

Figure 8:  Uniform quasiperiodic Girih pattern consisting of differently colored Girih knots.

The Girih knot structure in Figure 8 is based on the HBS cartwheel C3 in Figure 6(g). Its center is located
in the white circle in the lower middle. The nine white dots are the centers of five-fold symmetry and
correspond to the nine dots in the upper half of Figure 6(g). Eight of the spaces between two white dots
have the same structure as in Figure 7(d). However, while there each knot component has a distinct color,
in Figure 8 each Girih knot has its own color, which matches the color of the corresponding HBS tile in
Figure 6(g). Together with their mutual interweaving, the colorful knots create a picturesque image.
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Summary, Conclusion and Outlook

Inspired by a 13th-century Girih stone relief, a similar but quasiperiodically modified Girih pattern was
created by fitting historical Girih stencils into the quasiperiodic Penrose rhombs. We found a very strong
correlation of the resulting Girih knots with the HBS-tiling and the Ammann bar grid of the quasi-cell Q.
Due to the fact that the Girih segments are angled at 36 or 72 degrees and due to their incorporation into
the Penrose rhombs, it is clear that they are divided into the five possible orientations, each with a share
of 20%. This means that the quasiperiodic Girih pattern can be understood as a quasicrystalline structure.
By mirroring of certain stencil positions within the rhombs, the Girih knots can be entirely altered. Such
variations hold a great potential for a deeper understanding of the quasiperiodic Girih patterns.
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