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Abstract 

Cartesian to polar transformations that map a square into a disk are examined according to their topological and
geometrical implications  that  highlight the link between classical labyrinths and  space-filling curves and the
emergence of spirals in rounded ancient Roman tessellated mosaics, and lead to more general reflections.

Cartesian to Polar Transformations

Cartesian to polar transformations have been considered in the search for “computer generated beautiful
images” by Elliot  [4],  complex forms by Greenfield [5],  or  motifs by Bleicher  [1].  They have even
become  a  familiar  tool,  being  present  in  image  editing  softwares,  though  I  wrote my  own  tool  in
Processing. My intent is not to produce spectacular images but to reflect upon the particular topology and
geometry of the resulting space by comparison with those of the initial space.

A Cartesian to polar transformation consists in taking the Cartesian coordinates (x,y) of any point in
the  plane,  and  considering  them as  polar  coordinates  (r,θ).  For  our  purpose  in  this  paper,  we  shall
consider mapping a square into a disk, with the side of the square equaling the diameter d of the disk. To
find the polar coordinates (r,θ) of the transformed point P’ of point P with Cartesian coordinates (x,y), one
can use the transformation: r = x/2 and θ = 2πy/d (Figure 1).

Figure 1: Cartesian to polar transformation.

There are other possibilities, by inverting the role of x and y or by changing the direction of the polar
axis.  In order to implement such a transformation as a computer graphics program, one must be aware
that, while this transformation is a bijection from the square to the disk (except for those points that map
into the center of the disk), as a transformation between pixels, it is not. So the only way to obtain a
correct transformed image is to consider each pixel in the resulting disk and wonder from which pixel in
the square it comes from.  Also,  in  Processing, as in many other computer graphics systems, the  y axis
goes  downwards.  All  of  this  considered,  we  can  see  what  this  transformation  (with  the  polar  axis
upwards) does to a portrait of the creator of the Cartesian coordinates (Figure 2).
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Figure 2: Cartesian to polar transformation applied to a portrait of René Descartes (after Frans Hals,
Le Louvre, Public domain).

It has largely been observed that in such a transformation, lines are transformed into either radial
lines or concentric circles. In our case, vertical lines are transformed into radial lines (Figure 3(a)), while
horizontal ones are transformed into concentric circles (Figure 3(b)).

 

 

    (a)         (b)

Figure 3: Cartesian to polar transformation of lines: (a) vertical, (b) horizontal.

 It reveals some fundamental topological facts. Our initial image is clearly defined as having a top
and a bottom, a left and a right side. It is especially conspicuous in Figure 2 because it is a portrait. Our
final image, however, is defined as having a center and a perimeter, a unique border, and no sides. Vertical
lines are transformed into lines that start  at  the center and end at the border, and horizontal lines (or
segments) are transformed into circles, which are closed loops. The topology of the resulting disk, or
polar disk, is consequently different from that of the initial Cartesian square, and an intermediate step
could be to consider the square with a cylindrical, or periodic, topology, i.e. where the left and right sides
are supposed to meet. Let us add finally that the particular circular shape of the border of the disk is
irrelevant for these topological considerations, and could be any closed curve.

Labyrinths and Space-Filling Curves

My first use of such a transformation occurred through my investigation of labyrinths [2].

 Contrary to a familiar connotation of the term, medieval and ancient Cretan labyrinths are unicursal,
which means that there is only one path, without any branching or loop, and that it leads inevitably from
the entry on the perimeter towards the arrival at the center (no need for Ariadne’s thread…). The path of a
labyrinth is delimited by walls, which can be true walls, or bushes, or differently colored tiles on the floor,
or even simple lines. In the case of the famous digital labyrinth carved on a pillar of the portico of Lucca
Cathedral, the “walls” are grooves that delimit the elevated path (Figure 4). 
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Figure 4: The digital labyrinth on a pillar of the portico of Lucca Cathedral.

Ancient labyrinths (as seen in Figure 5(a)) differ slightly from medieval ones, but the principle is the
same. In any case there is always one wall going from the center to the perimeter.  One can then cut
through this wall, and “spread” the pattern (Figure 5).

       

                                                        (a)                                                       (b)

Figure 5: Spreading of labyrinths: (a) Cretan, (b) medieval.

The  path  of  a  labyrinth,  though  unicursal,  is  not  straightforward,  it  is  meandering,  contorted,
complicated in the etymological sense, i.e. folded, and refolded into itself. It conveys the feeling that the
goal is unreachable, though actually the arrival, the end is ineluctable. Moreover, the path visits every part
of the domain in which the labyrinth is enclosed.

These features are close to those of space-filling or FASS (space-Filling, self-Avoiding, Simple and
self-Similar) curves which are also unicursal, are recursively folded, and visit not only every part of a
portion of the plane, but every point, till filling it completely. Arguably the most famous of these curves
are the Peano and the Hilbert curves (see step 2 (Figure 6(a) and 7(a)) and 3 (Figure 6(b) and 7(b)) of the
Peano curve and step 3 (Figure 8(a)) and 4 (Figure 8(b)) of the Hilbert curve, as L-systems, in white on
black). 
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The main difference between labyrinths and FASS curves is that for the former the path goes from
the perimeter to the center of a disk (or variants), while for the latter, it goes from one corner to another
corner of a square. It is here that the Cartesian to polar transformation becomes useful. For the Peano
curve, that starts and ends on opposite corners, there are two possible variants (Figure 6 and 7 resp.). 

   

(a)         (b)

Figure 6: Cartesian to polar transformation of the Peano curve (variant #1): (a) step 2, (b) step 3. 

   

(a)         (b)

Figure 7: Cartesian to polar transformation of he Peano curve (variant #2): (a) step 2, (b) step 3.

   

(a)          (b)

Figure 8: Cartesian to polar transformation of the Hilbert curve: (a) step 3, (b) step 4. 

This experiment provides new labyrinths, and emphasizes the particular topology of the polar disk,
giving clearly a different role for the center and the perimeter.  But it  does not  take advantage of its
periodic topology, since, just as classical labyrinths, there is one wall going from center to perimeter, and
the path does not cross it. A curve that can do that, however, is the spiral, which we shall encounter in a
very different context.
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Spirals and Tessellations

My second encounter with the Cartesian to polar transformation occurred when analyzing ancient Roman
mosaics in the form of disks, sometimes also called roundels [3]. 

It was while working on phyllotaxis that a figure in Jean [6], showing a bad reproduction of such a
mosaic (Roman mosaic with Head of Medusa, 115-150 AD. Museo Nazionale Romano. Palazzo Massimo
alle Terme.), drew my attention. This image was weird because, while obviously showing spirals, those
were absolutely not phyllotactic spirals. This mosaic is composed with a constant number of triangular
tiles, arranged in concentric circles, or rows, around a smaller decorated disk. The conspicuous spirals are
of the same number as that of the triangles in each row, and there are the same number of clockwise and
anticlockwise spirals, all characteristics alien to phyllotaxy.

There are actually a few mosaics of the same type. Most are made with triangular tiles, either with
dark triangles on a light background (Figure 9(a)), or with colors enhancing the spirals (Figure 9(b) (c)).
Some display weirder  shapes, but that are part of triangles, very few display quadrilateral  tiles (Figure
9(d)). I could not find any mosaics with hexagonal  tiles. I first analyzed those patterns by counting the
rows, and the shapes by row, and acknowledging the variations in size of the shapes. There are a majority
of patterns with roughly isometric triangles, and consequently an increasing depth of the rows from center
to perimeter (Figure 8 (a) (b)), but in one case at least, the mosaicist tended to keep this depth constant,
and then got pointy triangles near the center, and more flattened ones near the perimeter (Figure 9(c)).

   

                    (a)                                     (b)                                      (c)                                     (d)

Figure 9: Analysis and simulation of: (a) Mosaic Floor with Head of Medusa, 115-150 AD. J. Paul Getty
Museum, (b) Head of Dionysos in spiral pattern mosaic. Corinth, Greece, (c)  Roman geometric mosaic

roundel, circa 3rd Century AD, (d) Roman mosaic, Syria, circa 4th-5th century AD.

Those patterns are obviously tessellations of the disk, and we can generalize them by producing
some such tessellations without the void disk at the center, and extend them beyond the perimeter of a
disk, with either constant or decreasing depth of the rows (or height of the shapes).

    

                   (a)                                      (b)                                       (c)                                     (d)

Figure 10: Generalized tessellations: (a) triangles, constant height, (a) quadrilaterals, constant height,
(a) triangles, decreasing height,(a) quadrilaterals, decreasing height.
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The first tessellations with a constant depth (Figure 10(a) (b)) may also be interpreted as classical
tessellations of the plane transformed by the Cartesian to polar transformation (Figure 11; we refer the
triangular tessellations with the number of black tiles).

   

            (a)             (b)

   

             (c)             (d)

Figure 11: Cartesian to polar transformation of tessellations: 

(a) 6 x 6 triangles, (b) 6 x 6 squares,(c) 30 x 30 triangles, (d) 30 x 30 squares.

Oblique lines produced by shifted tiles in classical Cartesian tessellations are not very conspicuous,
though the spirals in their transformations are, at least when there is enough density (Figure 11 (c) (d)).
And clever mosaicists enhanced them with their coloring. 

This interpretation leads us back to our Cartesian to polar transformation and its implications. We
saw what happened to horizontal and vertical lines. But what about oblique lines (Figure 12)?

  

 (a)       (b)            (c)

Figure 12: Cartesian to polar transformation of oblique lines: 

(a) diagonal, regularly spaced, acute angle, (c) regularly spaced, obtuse angle.

We see that oblique lines are transformed into Archimedean spirals, either one spiral or multiple
spirals. Now we can add a geometric characteristics to the polar disk: Archimedean spirals are as inherent
to it as oblique lines are to the Cartesian plane. In Figure 12(a) and (c) the oblique lines going from top to
bottom are transformed into spirals going from center to border (as did the path of the labyrinth in the first
section).  The  case  in  Figure  12  (b)  is  particularly  interesting:  it  exploits  the  periodic topology  and
transforms multiple oblique lines into a unique continuous spiral.
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The  other  tessellations  with  a  varying  depth  (Figure  10(c)  (d))  lead  us  to  introduce  a  new
transformation where θ = 2πy/d as before, but now r = ax, a being chosen conveniently for our disk to be
of  the  right  size.  Let  us  call  it  a  logarithmic  (by  analogy  with  such  spirals)  Cartesian  to  polar
transformation and look at what it does to the portrait  of Descartes (Figure 13), and to the tessellations
(Figure 14):

Figure 13: Logarithmic Cartesian to polar transformation applied to a portrait of René Descartes.

   

  (a)           (b)

   

  (c)           (d)

Figure 14: Logarithmic Cartesian to polar transformation of  tessellations:

(a) 6 x 6 triangles, (b) 6 x 6 squares,(c) 30 x 30 triangles, (d) 30 x 30 squares.

And, finally,  vertical  lines  are  still  transformed into radial  lines,  horizontal  ones into concentric
circles (Figure 15), and oblique lines into logarithmic spirals (Figure 16).

 

    (a)          (b)

Figure 15: Logarithmic Cartesian to polar transformation of: (a) vertical, (b) horizontal.
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 (a)      (c)            (d)

Figure 16: Logarithmic Cartesian to polar transformation of oblique lines:

(a) diagonal, regularly spaced, acute angle, (c) regularly spaced, obtuse angle.

 

We have defined two Cartesian to polar transformations, mapping oblique lines into Archimedean
spirals for the first  one, and into logarithmic spirals for the second one. This could be prolonged by
defining other Cartesian to polar transformations in which oblique lines are transformed into any other
type of spirals. 

Summary and Conclusions

Our journey into Cartesian to polar transformations has emphasized the particular topology of the polar
disk, as having a center and one border but no side, and the emergence of spirals. Let us add again that for
the topology, the particular shape of the border does not actually matter: a square can be considered as
well, if it is viewed as having a center and a perimeter and no side. Labyrinths are often inscribed in a
square, or another regular polygon. Our research originated in tessellated disk mosaics and labyrinths
(which happen to occur in mosaics too) but it goes obviously beyond that, especially in architecture. The
labyrinth is one of the origin myths of architecture. Defining a path is a main task for architects, and the
route through a museum is an obvious example of such an endeavor. This question links our two topics.
Two great architects chose the spiral, though inscribed in a square for Le Corbusier and his  Musée à
croissance illimitée, or its extension, the helix, for Frank Lloyd Wright and his Guggenheim Museum, but
explorations  of  a  more  labyrinthine  path  have  been  made  for  instance  by  Peter  Eisenman  for  the
Guangdon  Museum.  Those  examples  show  that,  while  labyrinths  and  spirals  are  two-dimensional
patterns, they can be extended to three dimensions.
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