Supplement to
Curved, yet Straight: Stick Hyperboloids
George Hart
Submitted to Bridges 2023

Stick Hyperboloid Torsion Anger
G. Hart

TAN. 2023
FOR the circular waist nyperboluid of two sheets $(b=a)$

$$
\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{a}\right)^{2}-\left(\frac{z}{c}\right)^{2}=1
$$

One ruling line is

$$
p(u)=(x, y, z)=(a, 0,0)+u(0,1, e / a) \text { parametrized by }-\infty<u<\infty
$$

$$
=(a, u, u c / a)
$$

The Distance, d, from $p(0)$ To $p(u)$ is $d=\sqrt{u^{2}+\left(\frac{u c}{a}\right)^{2}}=u \sqrt{1+(u / a)^{2}}=\frac{u}{a} \sqrt{a^{2}+c^{2}}$
So u_{0}, as a function of d is

$$
u=\frac{a d}{\sqrt{a^{2}+c^{2}}}
$$

A normal at any point (x, y, z) is the gradient $\left(\frac{y}{a^{2}}, \frac{y}{a^{2}}, \frac{-z}{c^{2}}\right)$
So A NORMAL AT $p(u)$ is $\left(\frac{a}{a^{2}}, \frac{u}{a^{2}}, \frac{-u c}{a c^{2}}\right)$

$$
O R(c a, u c,-u a) \text { by scaling bi } c a^{2}
$$

The unit normal at $p(0)$ is $(1,0,0)$
The unit worms at $p(u)$ is $\frac{(c a, u c,-u a)}{\sqrt{c^{2} a^{2}+u^{2} c^{2}+u^{2} a^{2}}}$ $\left\{\begin{array}{l}\text { The dot product of these } \\ \text { is the cosine of tit angle } \psi \\ \text { that we seek }\end{array}\right.$

$$
\left.\begin{array}{rl}
\psi & =\operatorname{ARccos}\left[(1,0,0) \cdot \frac{(c a, u c,-u a)}{\sqrt{c^{2} a^{2}+u^{2}\left(c^{2}+a^{2}\right)}}\right] \\
& =\operatorname{Arccos}\left[\frac{c a}{\sqrt{(c a)^{2}+\left(u \sqrt{a^{2}+c^{2}}\right)^{2}}}\right] \\
& =\text { ARCTAN }\left[\frac{u \sqrt{a^{2}+c^{2}}}{c a}\right] \\
& =\text { ARCTAN }\left[\frac{a d}{\sqrt{a^{2}+c^{2}}} \frac{\sqrt{a^{2}+c^{2}}}{c a}\right] \\
& =A R C T A N
\end{array} \frac{d}{c}\right] \quad \text { Q,E,D. } . ~ \$
$$

$$
\text { 12) Recall } \operatorname{Arccos}\left[\frac{A}{\sqrt{A^{2}+B^{2}}}\right]=\operatorname{Arctan}\left[\frac{3}{A}\right]
$$

