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Abstract  

Polygonal tessellations create exciting and fascinating patterns. These tessellations (tilings) are used in architecture, 
textiles, board games, and various other fields for practical, structural, and decorative purposes. If the polygons 
(tiles) contain a pattern, and the patterns connect at the polygon’s edges, the combined patterns can be even more 
fascinating. This study presents logic and constraints governing the appearance of polygons, with a primary focus 
on edges and a secondary focus on the patterns inside. Additionally, I question the practice of referring to patterned 
polygons as Truchet tiles. 

 
Introduction 

Numerous Bridges papers—some referred to in this paper—investigate polygon tessellations, where a 
group of polygons containing lines or patterns combine to form larger patterns—the pattern continues from 
polygon to polygon. These polygons are often called Truchet Tiles. Despite the many impressive creations 
and beautiful larger patterns discovered, the fundamental rules of these continuities have not been 
thoroughly explored. 

Tiles of various colors can create stunning patterns. By using various tessellations, the possibilities are 
virtually limitless, even with single-color tiles and without considering the patterns inside. This paper 
concentrates on patterned tiles. Specifically, it examines how these patterns meet at the tile’s edges and 
create larger patterns. 

Numerous polygon tessellations exist [2]. However, due to space constraints, this paper is limited to 
regular polygons and tessellations, and flat surfaces. Therefore, it covers only triangles, squares, and 
hexagons, with a few exceptions. 

 
Truchet Square 

The illustrious Truchet square is a fascinating example of patterned polygons. Father Sébastien Truchet is 
credited with developing this two-colored square, divided diagonally into white and black sections. 

Truchet squares can be used following pattern continuity rules, where matching edges align—meaning 
white edges meet white edges, and black edges meet black edges. Many tilings presented using Truchet 
squares do not adhere to this restriction. Figure 1 showcases Truchet tilings, both random and those 
following pattern continuity rules. 

 

 
Figure 1: Examples of random and pattern continuity tilings of Truchet squares. 
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When adhering to the rules, Truchet squares are quite limiting. The first tile can have any of the four square 
rotations, but the second and third only have two, and the fourth has no options. In practical applications, 
the limitations would be even more pronounced. A logical tiling order would be to place a tile only when 
two adjacent edges are known. Otherwise, a careless tiler might encounter a situation where no more tiles 
can be added.  

The greatest merit of the Truchet square lies in its simplicity: it comprises just one tile and one 
exceptionally simple pattern, yet it can be used to create various interesting patterns. Pelletier-Auger 
beautifully demonstrates this on his webpage [8]. 

 
Naming System 

In this work I consider tilings that are similar to the Truchet pattern continuity tilings discussed above, 
except that I consider hexagonal and triangular tiles, along with squares, and edges can be multicolored.  To 
ensure the polygonal tiles maintain pattern continuity, the multicolored edges of adjacent polygons must 
align, so I characterize polygons based on the color segmentation of their edges. The actual pattern within 
the polygon does not influence the continuity and is considered secondary. 

An edge can be divided into segments. In this study, I utilize equidistant segments; however, other 
types of divisions also follow either asymmetric or symmetric logic, depending on their symmetry. I will 
first explain symmetric edges and then asymmetric edges. 

Symmetrical Edges 
Symmetrical edges consist of a symmetrical sequence of segments. Figure 2 provides examples of 
symmetrical edges. 

 

 
Figure 2: Different symmetrical edges. As the width of a segment does not affect symmetry, it is just an 
artistic choice, and a line is logically a narrow segment. Segments of different colors are marked with 

capital letters. The name of the edge is according to the letters. The names of the edges in the figure are 
A, ABA, ABA, and ABCBA, respectively. 

 
If only one segment exists, the edge has just one color (the first image in Figure 2), such as in the Truchet 
Tile (Figure 1). An edge with a single color is always symmetrical by nature. The second simplest 
symmetrical edge is divided into three segments, such as white-black-white. If it were red-green-blue, it 
would not be symmetrical. Any odd number of segments can be colored symmetrically, as demonstrated in 
Figure 2. 

Additionally, an edge with a line starting from the middle should be classified as a symmetrical edge 
with three segments—the middle segment is as narrow as the line. The logic of continuity is the same for 
all polygons with symmetrical edges. 

If the edge colorings of two tiles are symmetric and have the same segmentation structure, then they 
can connect to continue the pattern within the tiles.  For example, an ABA square can seamlessly connect 
with an ABA hexagon or triangle. Figure 3 presents examples of tilings of polygons with symmetrical 
edges, both with and without polygon borders. 

A polygon with symmetrical edges can have different symmetrical edges. Polygons whose number of 
edges is not a prime number may have alternating edges. For example, the first edge could be ABA and the 
next one BAB repeatedly. Such a polygon is named ABA-BAB, where the hyphen marks the corner. 
Another example is the Truchet square, which could be named A-A-B-B square, meaning two white edges 
followed by two black edges. 
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Figure 3: These examples include a square, which is a simple monochromatic tile; an ABA square with 
random patterns inside; and an ABCBA hexagon, also with random patterns. Note the ABCBA triangles 

filling the gaps (with a white background to make them stand out). 
 
For efficiency, tiles with repeating edge sequences will be denoted by the fundamental string generating 
the repeating edge pattern.  Thus, the ABA-ABA-ABA-ABA square is simply the “ABA square,” but the 
ABA-ABA-BAB-BAB square must be named in a longer format. (Note that the ABA-ABA-BAB-BAB 
square is a “decorated” version of the Truchet square.) 

ABA-BAB is impossible for triangles and other polygons with an odd number of edges since that 
segmentation cannot be repeated without a remainder. For squares, ABA-BAB works well, as visualized in 
Figure 4. However, ABA-BAB hexagons have a pattern continuity issue, as shown in Figure 4. This 
problem can be circumvented by using ABA hexagons so that every intersection has two ABA-BAB and 
one ABA hexagon. 

 

  
Figure 4: ABA-BAB squares connect well, but it is important to note that all ABA edges are horizontal 
and all BAB edges are vertical (or vice versa). For hexagons, pure ABA-BAB tiling is not possible. Red 
wavy lines indicate problematic connections of edges. As demonstrated on the right, continuity can be 

resolved by incorporating ABA hexagons as part of the pattern. 
 

Asymmetrical Edges 
When an edge has an even number of segments, it inevitably becomes asymmetrical. Such polygons could 
have AB or AB-BA edges, or even AC-BC, which needs to be combined with CB-AB and BA-CA in the 
case of hexagons. Perhaps the most popular asymmetrical example is the AB-BA square, which, for 
instance, Reimann has used for typing at 45 degrees [6] and Carlson has scaled in a highly creative way 
[1]. Both are exemplary examples of the usage of pattern continuity. 

An asymmetrical edge requires a mirror edge to connect. AB connects to BA. More precisely, to create 
a continuous pattern, we need AB-BA and BA-AB squares in a checkerboard rhythm, as explained in more 
detail by Reimann [6]. BA-AB is actually AB-BA rotated 90 or 270 degrees, as well as AB-BA whose 
edges are shifted one step. Both AB-BA square patterns and all three different AB-BA hexagon patterns 
are shown in Figure 5. 

Pattern Continuity in Polygon Tessellations

55



 
 

Also, AB squares create a continuous pattern, but similar to AB-BA, every second square must be mirrored 
edge-wise. So every second square is BA, as seen in Figure 5. 

 

 
Figure 5: AB-BA squares necessitate a checkerboard sequence through a 90-degree rotation or by 

shifting the pattern. Shifting AB-BA turns it to BA-AB. In contrast, AB-BA hexagons consistently maintain 
the same edge-wise rotation. AB squares also require a checkerboard sequence. 

 
AB hexagons have the same limitation as ABA-BAB hexagons in Figure 4. Similarly, AB hexagons could 
be used if every third hexagon is AB-BA. The rules for joining polygons with different edges are not 
discussed further in this work. 

Mitchell visualizes similar polygons in his paper “Generalizations of Truchet Tiles” [4]. Presented 
polygons are mostly ABA—representing an edge with a line starting from the middle, and ABABA, with 
two lines starting from every edge. If the areas bounded by the line were colored and the line was forgotten, 
they would have different continuities. For example, ABA would turn into AB and ABABA into ABA. 
Later in the same paper, he colors ABAB squares and octagons. The pattern continuity rules of ABAB and 
AB are similar. 

A pure AB-BA triangle is impossible, but AB has no problem. Triangles also follow a checkerboard 
pattern, where AB and BA triangles are placed alternately, as shown in Figure 6. Also, the AB-BA triangle 
can be used with a variable ending (AB or BA) in a checkerboard tiling with an additional limitation to the 
rotation. 

 

 
Figure 6: Three different AB triangles on the left half create a minimalistic pattern. AB-BA-AB and AB-

BA-BA triangles on the right half have more limited tiling. 
 

With a third color C, it is possible to create hexagonal tilings where every edge has two out of three colors 
in pairs. With AB-CB hexagons being used together with BC-AC and CA-BA hexagons, patterns continue 
seamlessly. These three differently colored hexagons are tiled in a hexagonal grid so that every corner has 
all three tiles in the correct rotation. Like AB-BA hexagons, there are three possible rotations (0, 120, and 
240 degrees), as those three edges are identical. This logic is visualized in Figure 7. 
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Figure 7: AB-CB, BC-AC, and CA-BA hexagons tiled contain randomly chosen patterns inside. 

 
Asymmetric edges follow the same logic as a jigsaw puzzle. The edges and their opposites (mirrored) could 
be replaced with male and female-shaped edges. In the case of three-color hexagons, there would be three 
different pairs of male–female connections (AB to BA, BC to CB, and CA to AC). 

 
Patterns and Larger Patterns 

Edges define how polygons containing patterns (decorations) connect seamlessly, but the actual patterns 
determine how the larger pattern continues or discontinues inside the polygon. Generally, the pattern can 
have any appearance, which generates an infinite number of possible larger patterns. In this study, I use 
more or less minimalistic forms to create patterns inside polygons. 

In the case of symmetric polygons, the simplest forms can be created with arcs and straight lines only, 
as seen in previous figures. In the case of asymmetric polygons, I use both combinations of arcs and straight 
lines, as well as Bézier curves. They have a slightly different appearance, and it is a matter of taste which 
one prefers. I prefer Bézier curves, but I haven’t found mathematical reasoning for how sharp the curves 
should be. Some different styles are demonstrated in Figure 8. Mitchell goes even further into the freedom 
of patterns in his study [4]. 

 

 
Figure 8: Edge-wise identical hexagons in three styles tiled in three groups of four. The left one is the 

style that I have mostly used—mild Bézier curves. The middle one is more dynamic, and Bézier curves are 
sharper. On the right, patterns are formed by arcs and straight lines. All three groups have identical 

topologies of the patterns, with just the colors permutating. 
 

Patterns 
The pattern inside the polygon determines which color continues to the next tiles and which branch of the 
larger pattern ends. Different polygons with different edge types have different numbers of possible pattern 
topologies. Asymmetrical patterns can be rotated, so they have more than one appearance. Exemplary 
quantities of appearances are presented in Table 1.  
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Table 1: Numbers of different pattern topologies in polygons of different edge types. With rotations (w 
Rots) refers to the same pattern in different rotations in the grid. Some patterns have only one rotation, 

while others have as many as the polygon’s edges. The label nc means that I have not calculated or 
counted them (yet). “—” stands for not possible. A pentagon could be used to form a dodecahedron with 
pattern continuity, and a square to form a cube. Interestingly, a square has six patterns to match the six 

sides of a cube.  
 

 Triangle Square Pentagon Hexagon 
Edge type Patterns w Rots Patterns w Rots Patterns w Rots Patterns w Rots 

Symmetrical 
A 1 1 1 1 1 1 1 1 

ABA 3 5 6 14 10 42 28 138 
ABCBA 6 12 19 55 nc nc 255 nc 

ABA-BAB — — 28 138 — — nc nc 
Asymmetrical 

AB 3 5 6 14 10 42 28 138 
AB-BA — — 2 2 — — 3 5 

AB-CA-BC 1 1 — — — — nc nc 
AB-CB — — nc nc — — 4 12 

 
The versatility of the ABA hexagon patterns and rotations, as demonstrated in Figure 9, allows for a wide 
range of applications. Limiting the alternatives to specific tiles and rotations can generate more controlled 
or regular patterns. This approach is presented in more detail [8], showcasing the potential of such patterns 
in various contexts. 

 

 
Figure 9: The ABA hexagons feature 28 topologies with 138 appearances due to rotations for color B 

patterns (gray, green, blue, or red). Red patterns have one rotation, green patterns have three, and blue 
patterns have two. A yellow background indicates no dead-ends, and thick outlines signify forking. This 
variety allows for intricate patterns and designs. To be complete: “the backgrounds” (white and yellow) 

have the same number of topologies. 
 
One such application is the creation of letters and written artwork [7]. By designing specific patterns and 
rotations within the ABA hexagon system, one can form recognizable characters or symbols, such as text 
within the pattern. I have incorporated ABA hexagons into various artworks, including a mural in the Väre 
building at Aalto University [7]. You can find several applications of this concept in my earlier paper [8] 
and one example in Figure 12. 

Three-dimensional effects are also common, and they often resemble ribbons that overlap and 
intertwine. One such example is the hexagon with three ribbons, two of which cross each other, presented 
by Katz [3]. Ribbon patterns typically exhibit symmetrical edge logic, which allows them to be connected 
in various ways and even mirrored. In highly regular patterns, the ribbons could have different colors; 
however, pattern continuity becomes impossible when rotation is random. Of course, ribbons can still be 
hand-colored afterward, as demonstrated in Figure 10. 
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Figure 10: One simple ribbon hexagon, shown in black at the top left corner, rotated randomly. 

Individual ribbons are hand-colored to make them stand out.  
 

Certain edge types are more suitable for ribbon patterns. For example, an AB-CA-BC triangle results in a 
pattern where only one color connects while the other two colors have dead ends. However, with ribbon 
patterns, a regular network of rings is formed, as depicted in Figure 11. 

 

 
Figure 11: AB-CA-BC triangles require either the mirror triangle AC-BA-CB or the unmirrored AC-BA-
CB. Mirroring affects the ribbon patterns; in this case, the knot changes direction. Observe that the left 
half of the image uses mirrored triangles while the right half does not. A white background is used to 

distinguish the ribbons. 
 

Summary and Conclusions 
Simple polygonal tessellations offer immense potential to create various regular and non-repeating patterns. 
These patterns can be designed, random, or a mix of both. Of course, the level of randomness can be tailored 
according to the designer’s preferences. 

I believe these patterns could be effectively utilized in textiles, wallpapers, and ceramic tile 
applications. The AB-CB hexagon male–female logic could be applied to jigsaw puzzles, and I have several 
ideas for both board and computer games. 
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Since the actual Truchet square is a unique case among the multitude of polygons, edges, and patterns, I 
would not generalize the use of its name to encompass all polygons containing different patterns and 
forming larger patterns. Instead, “Truchet square” should specifically refer to The Truchet Tile by Father 
Truchet. A more general term for all polygons containing patterns could be, for example, “patterlygon.” 
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Figure 12: Example of creating text with layered ABA hexagons 
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