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Abstract

Edmund Harriss developed a branching spiral based on a decomposition of a rectangle whose sides are in the plastic
ratio into a square and two smaller rectangles. This concept was inspired by the golden spiral, a classical self-similar
figure induced by decomposing a rectangle into a square and a similar rectangle. Neither of these decompositions
can be realized in a medium where the side lengths of individual components must be integers, but the golden spiral’s
discrete variant, the Fibonacci spiral, can be so realized. This work proposes and analyzes an integer-side-length
variant of the Harriss spiral.

The Golden and Fibonacci Spirals

One of the widely celebrated aesthetic properties of the golden ratio ¢ = ]%B is that a rectangle whose side

lengths are in the golden ratio can be decomposed into a square and a smaller rectangle in the same ratio.
The smaller rectangle can itself be decomposed into a smaller square and yet smaller rectangle, and so on
indefinitely; the resulting arrangement, if one consistently rotates the direction of the decomposition by 90
degrees in the same direction, is a spiral of smaller and smaller squares. This process appears in Figure 1(a).
A quarter circle is often drawn inside each square, as seen in this figure, to accentuate the spiraling nature of
the squares.

This decomposition of a rectangle into several squares in different sizes is appealing for such arts as
crochet or quilting, where the stitching together of separate geometric elements, especially squares, is an
established form. However, specifically for the purposes of representing this design in crochet, the fact that
the golden ratio is irrational is a significant liability. While in quilting, fabric can be cut to any length desired,
crochet requires an integer number of stitches. In all but the lightest of yarns or in thread crochet, the sizes
of individual stitches would make it likely that simply rounding square sizes to the nearest integer would, in
some places, lead to squares which are not the right size to be joined together.

The golden spiral, however, has a variant, the Fibonacci spiral, in which all lengths are integers, and
are specifically the Fibonacci numbers defined by the recurrence Fy = 1, F; = 1, and F,, = F,,_1 + F,,_» for
n > 2. Just as the golden spiral is produced by decomposing a 1 X ¢ square into a 1 X 1 square and the similar
¢! x 1 rectangle, so does the Fibonacci spiral decompose a F,.,; X F, rectangle into a F,, x F,, square and
a F,,_1 X F, rectangle. Notably, in the Fibonacci spiral the smaller rectangle is not similar to the original
rectangle but is decomposable in the same manner. Whereas the golden spiral is infinite, a Fibonacci spiral
is of necessity finite in its descent, since it will eventually reach a decomposition into 1 X 1 rectangles. A
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(a) The golden spiral (b) 13 x 8 Fibonacci spiral

Figure 1: The golden spiral and its integer approximation
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Figure 2: A Fibonacci spiral of seven granny squares

Fibonacci spiral decomposed into 6 squares appears in Figure 1(b); it is not identical to the golden spiral but,
if the original rectangle starts with high enough Fibonacci numbers, it appears very similar. This similarity
arises from a close correspondence between the golden ratio and the Fibonacci numbers, specifically that the
limit of the ratio of consecutive Fibonacci numbers approaches the golden ratio.

Because its side lengths are integers, a Fibonacci spiral is amenable to being stitched from crocheted
granny squares, and the blanket in Figure 2 uses this property to present a near approximation of the golden
spiral.

The Harriss Spiral

Edmund Harriss designed a variant of the decomposition for the golden spiral in which a rectangle is
decomposed into three smaller units: a rectangle similar to the original rotated 90°, a square, and a similar
rectangle in the same orientation as the original rectangle [1][3]. This decomposition appears in Figure 3(a).
As in the golden-spiral decomposition, the individual non-square units can be decomposed further along
these lines to create a cascading filling of the rectangle with ever-smaller squares. Unlike in the golden
spiral, however, each square is incident on two smaller regions appearing in the same generation; if arcs are
drawn between each square and the square which appeared in its previous generation, we thus get a branching
structure, shown in Figure 3(b).

(a) The Harriss decomposition, with arcs (b) Iterated Harriss decomposition

Figure 3: The construction of the Harriss spiral
As with the golden spiral decomposition, the Harriss spiral requires a specific aspect ratio for the original

rectangle. While the golden spiral requires an aspect ratio which is a solution to ¢ = ¢ + 1, the Harriss spiral
requires an aspect ratio p satisfying p> = p + 1, whose real solution is known as the plastic ratio and equals

{/9 +1;@ + {/9 _1;@ ~ 1.3247.

Like the golden ratio, this quantity is unsuitable for integer-length crafting techniques such as crochet, which
motivated a search for a Fibonacci-spiral analogue to the Harriss decomposition.
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Figure 4: An integer-sequence decomposition akin to the Harriss design
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Figure 5: Branching spirals based on the Padovan sequence

Padovan Numbers

Just as the Fibonacci spiral relaxed the rectangle similarity condition for the golden spiral, it is possible to
relax the similarity condition on the Harriss spiral. Instead of demanding that the rectangles all be in the
same aspect ratio, we may establish that, for some sequence ag, a1, as, . . ., a rectangle is a valid one to use
either as the original rectangle in an integer-Harriss decomposition, or as any of the nonsquare rectangles in
an integer-Harriss decomposition, if it has dimensions a, X a,+; (or a 90° rotation thereof) for some n.

Since our decomposition should utilize the entire sequence, and since the original rectangle and its
largest subrectangle share an edge, we shall assume that, if the original rectangle has size a, | X ay, its largest
subrectangle should have size a,,—1 X a,. It is possible that the smaller rectangle comes from considerably
earlier in the sequence, so we establish its dimensions to be a,,_; X a,_;— for some i > 1, and then the
square has sides both of length a,_;. This schematic appears in Figure 4. In order for all the edges to line up
correctly and fill the original rectangle, it thus follows that:

anp =0ap-j—1 +an-

Apt+l = 0p-1 +ap—

Substituting n + 1 in for n in the first equation and equating it to the second yields a;,—;+1 = dn—1, SO
in order for this sequence to be nontrivial we must have i = 2, and the governing equation of this number
sequence is a, = a,-» + a,-3. Several sequences satisfy this recurrence, but since the eventual goal is a
reduction to 1 X 1 squares, we may establish ap = a; = a» = 1 as initial conditions. The resulting sequence
is of the Padovan numbers, with OEIS reference number A000931 [2].

The resulting decomposition could be called the rectangular Padovan spiral by analogy to the Fibonacci
spiral. The procedure to build such a spiral is to start with a rectangle whose side lengths are two consecutive
Padovan numbers, and then to repeatedly decompose each a,; X a, rectangle into an a,_; X a, rectangle,
an a,_p X a,_» square, and an a,_, X a,_3 rectangle until all regions are square. This process is shown for
several initial rectangle sizes in Figure 5. For very small starting rectangles, the result is unsatisfactory, but
a structure akin to the Harriss spiral eventually emerges. As in the case of the Fibonacci spiral, the limiting
aspect ratios of the two spirals are the same. Just as the ratios of consecutive Fibonacci numbers converge to
the golden ratio, the ratios of consecutive Padovan numbers converge to the plastic ratio.
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Table 1: The number of each component in Padovan-spiral decompositions.

Rectangle size 1x1 2x2 3x3|4x4
blue ‘ orange ‘ ap X aop ‘ ayXay |ayXax | azxas | agXas
2x1 1 0 1 0 0 0 0 0 0
2x2 1 1 1 1 0 0 0 0 0
3x2 2 1 1 1 1 0 0 0 0
4x3 3 1 2 1 1 1 0 0 0
S5x4 4 2 3 2 1 1 1 0 0
7%x5 6 3 4 3 2 1 1 1 0
9x7 9 4 6 4 3 2 1 1 1

Constituent Elements in the Rectangular Padovan Spiral

The Padovan spiral decomposes the entire rectangle into several squares, many of which are 1 X 1. Those
1 x 1 squares themselves can be thought of as being in several families, even though they are geometrically
identical: those that arise as large rectangles in the decomposition (colored blue throughout this paper),
those that arise as squares in their own right (colored white), and those which are small rectangles (orange).
The several possible constituent elements of Padovan spiral decompositions are listed in Table 1 for a few
initial rectangle sizes, with a specific distinction made among several different ways 1 X 1 and 2 x 2 white
squares can show up, since the numbers 1 and 2 both appear multiple times in the Padovan sequence. In this
table, each column, after the first appearance of a 1, satisfies the recurrence b, = b,_1 + b, _3; this occurs
because the a,,41 X a, rectangle decomposes into a single a, -, X a,_ square together with all the constituent
components of a a, X a,_ rectangle and all the constituent components of a a,,_» X a,_3 rectangle. With the
appropriate categorization of the 1 X 1 and 2 X 2 squares by which term of the Padovan sequence is used to
create them, the number of components of each type are all offsets of the exact same sequence, the Naryana’s
cows sequence, with OEIS reference number A000931 [2]. The total numbers of 1 X 1 squares and 2 X 2
squares are sums of several offsets of this sequence, such that total the number of 1 X 1 squares is simply
twice the Naryana’s cows sequence, and the number of 2 X 2 squares is the sequence with OEIS reference
number A097333 [2].

Future Work

The granny-square afghan based on these principles is yet to be constructed, but a Padovan-spiral variant of
the work in Figure 2 is in progress. In addition, the ideas developed here are applicable to other self-similar
decompositions of rectangles. Harriss has described such decompositions in general as proportion systems
[1], and although many proportion systems demand irrational aspect ratios, the same recurrence-based
description developed here should be applicable to produce integer analogues of each of them.
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