
(Circle + Square)/Triangle: Using Shape-Based Expressions for
Image Creation and Exploration

John Nicholson

Austin Peay State University, Clarksville, TN, USA; nicholsonja@apsu.edu

Abstract

This paper describes a method for evaluating simple math expressions in which the operands are shapes, lines, and

curves. The operands can be either stationary or placed in motion through rotation and translation operations. The

results of these expressions can be evaluated with the aid of software, allowing them to be rendered as both static

images and animations.

Shape-Based Expressions

In basic expressions such as

İ = ğ + Ġ (1)

values can be assigned to ğ and Ġ so that a value for İ can be calculated. The work described here is based on

a simple question: what would the value of İ be if ğ and Ġ were shapes? For example, if ğ was a square and Ġ

was a circle, then in the expression

İ = + ⃝ (2)

what would be the value of İ? With this question as a starting point, I developed a method to evaluate simple

expressions with shapes as the operands and then implemented software that can render images created from

the results of the shape-based expressions.

The first step is to define shape ď as any 2-dimensional shape, curve, or line that has the center ďÿ and

that can be expressed with parametric equations ď
Ĝ
Į () and ď

Ĝ
į (), which are used to calculate ď’s coordinates

based on ĉ:

ďĮ (ĉ) = ď
Ĝ
Į (ĉ)

ďį (ĉ) = ď
Ĝ
į (ĉ) (3)

ďÿ = (ďęĮ , ďęį)

Next is to define a general version of equation (1):

Ė = ą op Ć (4)

where ą and Ć are shapes, op is an operator such as + or ∗, and Ė is the shape resulting from the expression.

Applying the equations in (3) to equation (4) leads to

ĖĮ (ĉ) = ąĮ (ĉ) op ĆĮ (ĉ)

Ėį (ĉ) = ąį (ĉ) op Ćį (ĉ) (5)

Ėÿ = (ąęĮ op ĆęĮ , ąęį op Ćęį)

Although not expressed in the equations, the software also contains a rotation function that rotates a shape

around its center. Examples of the addition, subtraction, multiplication, and division operations on a circle

Bridges 2023 Conference Proceedings

489



(a) ý + þ (red outer shape)

and ý − þ (blue inner

shape).

(b) ý ∗ þ (red curve). (c) ý/þ (set of red lines).

Figure 1: Results of basic operations on square ý and circle þ where þ’s radius is 3, ý is inscribed in þ,

and both are centered at the origin.

and a square are shown in Figure 1. As the figures show, the results can be closed curves (Figure 1(a)) or open

curves (Figure 1(b)). Division (Figure 1(c)) may result in a division by 0 when parts of the shape operand in

the denominator intersect the x-axis or y-axis. In these cases, values in Ė move towards infinity and result in

lines going beyond the “interesting” part of the image, as represented by the horizontal and vertical lines in

the figure.

Using these basic concepts, any number of shapes and types of shapes can be combined using any set of

operators. For example, Figure 2 shows the result of the expression

Ė = octagon − circle − hexagon + pentagon + pentagon − square − triangle − triangle (6)

where all shapes are inscribed in the ęğĨęĢě, similar to the square and circle in Figure 1. Figure 3 shows the

result of multiplying two more complex curves.

Figure 2: Spaceship-like result of

adding and subtracting

multiple shapes.

(a) Epicycloid (blue) and rose

curve (red) centered at the

origin.

(b) epicycloid ∗ rose curve.

Figure 3: Multiplying more complex curves.

Since this project is software-based, drawing a shape requires starting at some point on the curve, usually at

ĉ = 0. The initial point can be changed by adding a starting offset ďoffset to ĉ, which affects how the shape

interacts with the other shapes in the expression. Adding offsets for ą and Ć to the equations in (5) leads to

ĖĮ (ĉ) = ąĮ (ĉ + ąoffset) op ĆĮ (ĉ + Ćoffset)

Ėį (ĉ) = ąį (ĉ + ąoffset) op Ćį (ĉ + Ćoffset) (7)

Ėÿ = (ąęĮ op ĆęĮ , ąęį op Ćęį)

Nicholson

490



(a) þ with no offset or

rotation.

(b) þ with no offset and

rotated 45◦.

(c) þ with þoffset = 72◦ and

no rotation.

(d) þ with þoffset = 72◦ and

rotated 45◦.

(e) Result for Figure (a). (f) Result for Figure (b). (g) Result for Figure (c). (h) Result for Figure (d).

Figure 4: Ė = ý + þ where ý is a lemniscate and þ is a triangle. The results in the second row vary

depending on þ’s starting offset location (red dots) and rotation in the first row.

Motion

Once starting offsets and rotations were implemented, as demonstrated in Figure 4, it became apparent that

motion could be used to create more complex images, both static and animated. A shape’s starting offset

could move along the entire path of a shape, and shapes could make complete rotations from 0◦ to 360◦.

Combining the results at multiple offset positions and rotation angles created interesting results. Unlike the

results in Figure 4 that were computed using single rotation angles and offset positions, Figure 5 shows how

moving the offset, rotating a shape, and combining both movements result in different images when results

from multiple discrete steps are combined into a final image.

(a) þ rotates around the origin.

See Figure 4(b).

(b) þ’s offset moves around its

perimeter. See Figure 4(c).

(c) þ rotates around the origin

while its offset also moves. See

Figure 4(d).

Figure 5: Results for shapes in Figure 4 using 40 discrete steps for offset motion and rotation.

Although all shapes in the examples up to this point have been centered at (0, 0), this is not a requirement

and shapes can be centered at any coordinate. If a shape can be located anywhere, it is a simple extension

to move a shape along a path Čď , which is another shape itself. For example, a circle could move along the

path defined by a square. Applying this to Ėÿ in the equation set (7) means that each operand can have its

own unique path, Čą and ČĆ .

Ėÿ =((ąęĮ + Čą
Į (ĉ)) op (ĆęĮ + ČĆ

Į (ĉ)) , (8)

(ąęį + Čą
į (ĉ)) op (Ćęį + ČĆ

į (ĉ)))

(Circle + Square)/Triangle: Using Shape-Based Expressions for Image Creation
and Exploration

491



(a) A lemniscate moving along a

path defined by a rose curve.

(b) Hypotrochoid. (c) lemniscate + hypotrochoid.

Figure 6: Example of adding a moving shape, a lemniscate, to a static shape, a hypotrochoid.

Figure 6 shows an example of an image that can be created when one of the operands is moving along a path.

The result in Figure 6(c) was rendered using a density-plot approach similar to the one described in [1].

Conclusion

Treating curves and shapes as operands in math expressions has allowed me to explore and create new

mathematical-based images. Figure 7 shows some results, including one possible rendering of the paper’s

title in Figure 7(b). Higher resolution versions of these images, as well as additional images, are available

in the paper’s supplementary materials. The next step in this project is to develop a web-based interface for

exploring these expressions, images, and animations.

(a) epitrochoid + hypotrochoid. (b) (circle + square)/triangle. (c) hypotrochoid ∗ oval.

Figure 7: Examples created from various shape expressions.

References

[1] J. Nicholson. “Curve Stitching Density Plots.” Bridges Conference Proceedings, Linz, Austria, July

16–20, 2019, pp.351–354. https://archive.bridgesmathart.org/2019/bridges2019-351.html.

Nicholson

492

https://archive.bridgesmathart.org/2019/bridges2019-351.html

