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Abstract

How can we visualize all the surfaces that can be made from the faces of the tesseract? In recent work, Aveni, Govc,
and Roldán showed that the the torus and the sphere are the only closed surfaces that can be realized by a subset of
two-dimensional faces of the tesseract. They also gave an exhaustive list of all the isomorphic types of embedings
of these two surfaces. Here, we generate 3D models of all these surfaces. We also exhibit, with the help of some
hyper-ants, the minimum realization of the Möbius strip on the tesseract.

1 The hypercube and its group of symmetries

We denote the 𝑛-dimensional unit cube by 𝑄𝑛 = [0, 1]𝑛, and its set of vertices by 𝑄𝑛
0 . Each vertex of 𝑄𝑛

can be represented by an element of the set of all 𝑛-tuples with binary entries {0, 1}𝑛. We denote by 𝑄𝑛
1 the

one-dimensional skeleton of 𝑄𝑛, that is, the set of its vertices and edges. We observe that 𝑄𝑛
1 is the graph

with vertex set 𝑄𝑛
0 and an edge between two vertices if and only if they differ in exactly one coordinate.

Similarly, 𝑄𝑛
2 denotes the two-dimensional skeleton of 𝑄𝑛, which consists of the one-dimensional skeleton

plus all its two-dimensional faces (we will refer to these as simply faces). We refer to a subset of 𝑄𝑛
2 as a

two-dimensional cubical complex.
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Figure 1: Vertices and edges of 𝑄4.

For a unit cube 𝑄3 = [0, 1]3, con-
sider its sets of vertices 𝑄3

0, edges 𝑄3
1,

faces 𝑄3
2, and of course the set consisting

of the cube itself 𝑄3
3. The elements of

these sets are the cells of 𝑄3. Geomet-
rically, every cell of 𝑄𝑛 is a product of
vertices and intervals, and therefore can
be encoded combinatorially as an element
of {0, 1, ∗}𝑛. Here a * in an entry implies
that in the product, the whole interval 𝐼
is considered in that direction. For ex-
ample, in the tesseract, 𝑄4, the four-tuple
(∗, 0, 1, 0) encodes the edge displayed in
the upper right part of Figure 1. Thus, ev-
ery subcomplex of 𝑄𝑛 can be represented
as a subset of {0, 1, ∗}𝑛. We call this
star notation. We can use this notation
to easily calculate the number of cells in
𝑄4. This is the size of {0, 1, ∗}4, yielding
34 = 81 cells.

Bridges 2023 Conference Proceedings

441



The 𝑛-dimensional hyperoctahedral group, denoted by 𝐵𝑛 is a group of order 2𝑛𝑛! describing the
symmetries of an 𝑛-dimensional hypercube. The group 𝐵2 is precisely the group of symmetries of the square:
the dihedral group of order eight. However, 𝐵𝑛 can also be regarded as the group of signed permutation
matrices, which consists of all 𝑛 × 𝑛 invertible matrices with entries {1,−1, 0}, with matrix multiplication as
its group operation. Since we are interested in the symmetries of the tesseract, 𝐵4 will play an important role
when classifying all of its surfaces.

2 Cubical surfaces

A two-dimensional cubical complex C is a cubical surface (without boundary) if every point has a neigh-
borhood 𝐷 that is homeomorphic to a two-dimensional disk. For the tesseract, an equivalent condition is
that all edges of C are contained in exactly two faces. (More generally, there will be an extra condition at
the vertices.) Using this characterization of a cubical surface on the tesseract, Aveni, Govc, and Roldán [1]
computed an exhaustive search of all cubical surfaces in the tesseract, finding 127 surfaces. Under the action
of the symmetry group 𝐵4, these fall into eight equivalence classes. For each of these isomorphic types we
have chosen a suitable representative for 3D printing. Figures 2, 3, and 4 show two photographs of each.

(a) A (b) A (c) B (d) B

(e) C (f) C (g) D (h) D

(i) E (j) E (k) F (l) F

Figure 2: Embeddings of S2 in the tesseract. The surfaces 𝐴 through 𝐹 have 8, 24, 8, 24, 32, and 24
possible representatives respectively.

Classifying and counting the possible configurations of some system is a very common problem in
combinatorics. One of the most famous artist working in this direction was Sol LeWitt. Perhaps his closest
work to ours is Variations of Incomplete Open Cubes. Here LeWitt finds 122 connected subsets of the
one-skeleton, up to orientation preserving symmetry (but leaving out the entire cube, and also subsets that
lie in a single face of the cube). We go up in dimension, selecting from the 24 faces of the tesseract rather
than the 12 edges of the cube. This would result in far more configurations, but the extra constraint of the
faces forming a closed surface greatly restricts the possibilities.

Estévez, Roldán, and Segerman

442



Figure 3: Embedding of T2 in the tesseract. The surface has 3 possible representatives.

Figure 4: Embedding of S2 ∐S2 in the tesseract. The surface has 4 possible representatives.

3 A cubical surface with boundary

A natural next question is to classify the cubical surfaces with boundary. Such a surface is a two-dimensional
cubical complex with the property that any point has an open neighborhood homeomorphic to either a disk
or a half-disk. This is a much weaker constraint on the possibilities than requiring that the surface be closed
and we have yet to perform an exhaustive search for such surfaces. However, we found a cubical surface
homeomorphic to a Möbius strip. Note that the tesseract is the lowest dimensional cubical complex in which
this is possible. One possible realization of the Möbius strip is given by the faces:

C := {(∗, ∗, 1, 1), (∗, 0, 1, ∗), (0, 0, ∗, ∗), (∗, 1, 1, ∗), (∗, 1, ∗, 0), (0, ∗, ∗, 0)}.

We could illustrate this Möbius strip in the same style as our other surfaces, but we were inspired to
create an homage to Escher’s print Möbius Strip II. To do this, we follow a similar procedure to the one
implemented in [2]. That is, we place a three-dimensional model of our ant inside of a cube in such a way
that it is nicely standing on one of the faces of the cube (see Figure 5). Then we embed this cube as a cell
of the tesseract. Finally, we project the faces with the ants back to three-dimensional space. In star notation,
the eight three-dimensional cells of the tesseract are represented as

(0, ∗, ∗, ∗), (1, ∗, ∗, ∗), (∗, 0, ∗, ∗), (∗, 1, ∗, ∗), (∗, ∗, 0, ∗), (∗, ∗, 1, ∗), (∗, ∗, ∗, 0), (∗, ∗, ∗, 1).

We may map our ant from the three-dimensional cube into each one of these cubes via

(0, 𝑥, 𝑦, 𝑧), (1, 𝑥, 𝑦, 𝑧), (𝑥, 0, 𝑦, 𝑧), (𝑥, 1, 𝑦, 𝑧), (𝑥, 𝑦, 0, 𝑧), (𝑥, 𝑦, 1, 𝑧), (𝑥, 𝑦, 𝑧, 0), (𝑥, 𝑦, 𝑧, 1),

selecting the permutation of the entries 𝑥, 𝑦, and 𝑧 in such a way that the ants are facing in the correct
directions as they walk around the Möbius strip.

Surfaces in the Tesseract

443



Figure 5: Ant inside the cube.

To bring our ants back to three-dimensional space we use a com-
position of radial projection followed by stereographic projection to map
the ant from the cube to the “shadow” of the tesseract. To achieve this,
consider the unit vector (0, 0, 0, 1) ∈ R4, this will be the “north pole”
of our hypersphere 𝑆3, from which we will apply the stereographic pro-
jection. To keep notation as clear as possible, consider the translation
𝜏 : R4 → R4 defined by (𝑥, 𝑦, 𝑧, 𝑤) ↦→

(
𝑥 − 1

2 , 𝑦 −
1
2 , 𝑧 −

1
2 , 𝑤 − 1

2

)
, which

will take the center of 𝑄4 to the origin in R4. For any vertex 𝑣 ∈ 𝑄4
0, the

point 𝜏(𝑣) will have coordinates {±1/2}4. We use the radial projection
𝜌 : R4 \ {(0, 0, 0, 0)} → 𝑆3 defined by 𝑣 ↦→ 𝑣

| |𝑣 | | . This maps any non-zero
vector to its projection on the hypersphere. The stereographic projection

mapping 𝜋𝑝 : R4 \ {(0, 0, 0, 1)} → R3 defined by (𝑥, 𝑦, 𝑧, 𝑤) ↦→
(

𝑥
1−𝑤 ,

𝑦

1−𝑤 ,
𝑧

1−𝑤
)

takes us back to R3. Here
we project from a point at the center of a cube of the tesseract. This means that the edges and faces of the
tesseract are as small in the projection as possible (certainly we want to avoid any of these going through the
projection point). Our ant crawls on, and is close to one of the faces of the cube. This means that it does not
get too close to the center of its cube. Thus, even the ant in the “outer” cube of the projection is not too big.
Figure 6 shows the result, applied to the set of faces C.

Figure 6: Hyper-ants walking along the Möbius strip.
Sketchfab link: https:// skfb.ly/oEMDt
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