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Abstract  
I describe how to make textile Borromean Seifert surfaces. The surfaces can be used for writing, drawing or 
printing. I turn to three-phase electricity, Lacanian psychology, and mathematics itself in order to fill the surfaces 
with meaning and aesthetic content. 

 

Introduction 
 
For every knot, there exists a surface such that the edges of the knot are the boundary of that surface. The 
same holds for each link (intertwined loops or knots). This amazing result was discovered by Herbert Seifert 
in 1934. Seifert surfaces, and more generally, minimal surfaces, can be turned into art works, as shown by 
Grossman [1], Kasuba [2], Pauletti et al. [3], and Séquin [4]. The program SeifertView by Jack van Wijk 
[7] makes these Seifert surfaces visible on the computer. In this paper, I focus on the Borromean link of 
Figure 1(a), which has three loops which hold together, although they are pairwise disconnected. The theory 
of knots and links is a branch of topology, also known as rubber sheet geometry. Usually that means that 
one does not care about the exact shape of curves and surfaces, as any folded or wrinkled version is 
considered the same. In this project I do care about the precise shape as I want the Seifert surface to be 
smooth, working with stretch fabric knitted from polyester and elastane (synthetic rubber). As Jack van 
Wijk has shown, the surface can be turned into a minimal-energy surface, like a soap-film. My first research 
question is how to make a Borromean Seifert surface using stretch fabric. My approach is hands-on and 
iterative. The second question is how to assign meaning and aesthetic content to the surface. For this I turn 
to three-phase electricity, Lacanian psychology, and mathematics itself.  

 

Starting Points and Initial Explorations 
 
SeifertView provides a good initial estimate of the loop form, as shown in Figure 1(b).  I manipulate the 
view to see the loops in an orthogonal manner and keep a screenshot as a template for bending metal loops. 
Aiming at a final assembly of about 25cm height, I fix the loops at 76cm length. The loops are not circular 
but resemble a superellipse (a = 14.5cm, b = 9.1cm, n = 2.3). I use 2.5mm2 single core copper house wiring 
electrical cable, see Figure 2(a), which is easy to deform, yet flexible (pushing back at small deformations).  

                   
                                                         (a)                                                (b)                                                   

Figure 1: (a) Borromean rings by Jim.belk, Wikimedia, (b)  Screenshot from SeifertView. 
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From paper and tape, I make a first surface, shown in Figure 2(b).   Removing it from the loops, I find that 
the surface is not developable (i.e., it cannot be flattened). I must choose to either use stiff woven fabric, 
cutting darts, or use stretch fabric. I choose the latter, aiming at a minimal-energy surface which finds its 
form in an interplay with the loops. Cutting at the six narrowest areas, I design my pattern, resembling the 
three (non-flat) pieces of paper obtained from cutting the model of Figure 2(b) (two “triangles”, one 
“hexagon”), yet slightly smaller. After adding seam allowance, I use these for fabric cutting.  
 

          
                  (a)                                      (b)                                     (c)                                       (d) 
Figure 2:  (a) Loops, (b) Paper model, (c) Prototype with 2.5mm2 loops, (d) Prototype with 6mm2 loops. 

 

Construction Details  
 

Initial cutting is done by laser (the outer dashed lines 
in Figure 3). The surface is doubled, so I need 4 
triangles, pairwise mirrored, and 2 hexagons, also 
mirrored (provided as supplementary material). First, 
I assemble the six panels pairwise using pins (along 
the red, green, and blue long edges).  Then, I sew the 
short seams  (the arrows in Figure 3). Going from the 
upper (double) triangle to the hexagon involves a 
left-turning twist, from the hexagon to the lower 
triangle a right-turning twist. The short seams are 
sown “right sides together”, so the stitching will be 
on the inside of the finished project (upper panels 
connect to upper panels, lower to lower, and colors 
must match). Next, the long seamlines, marked by 
colored pins, are topstitched with colored yarn. I use 
a decorative zig-zag (stitch 17 on a Brother Innovis), 
since stretch fabric needs zig-zag stitching.  
Openings are left for inserting and closing the loops (by soldering, later I switch to screw terminals).  Stretch 
fabrics tend to curl; ironing spray helps. The openings are closed by hand-sewing, as the 3D object does 
not fit under the machine. The fabric is trimmed along the outer rim of the decorative stitch. I find that 
6mm2 Cu loops work better than 2.5mm2. After six iterations1, two of which are shown in Figures 2(c,d), 
the form is satisfying. For the print on the fabric, there are two alternatives, described in the next sections.  

Three-phase Field Lines 
 
I design a system of lines, resembling the field lines known in physics. The lines can serve as coordinates 
when measuring stretch and I want them to be aesthetically pleasing too. Rather than mapping an existing 
coordinate system (Cartesian, polar), I let the lines originate from the three loops of the Borromean link. I 
take inspiration from three-phase electric systems, as pioneered by Nikola Tesla and Mikhail Dolivo-

 
1 The main steps of the iterations are: from single to double surface, asymmetric pattern, digitized pattern, smaller 
triangles, laser-cutting instead of scissors, and thicker loops. The loop length was never changed. 
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Dobrovolsky. Engineers calculate AC voltages and currents by representing them as complex numbers, 
following a method proposed by Charles Proteus Steinmetz [5].  I imagine the three loops to carry the 
voltage of one phase each, and then I calculate the corresponding field in the surface. 

 
                                       (a)                                                         (b)   

Figure 4: (a) Field lines on triangle surface, (b) Field lines on hexagon surface. 
 

The field is calculated for the triangle and the hexagon separately (ignoring stretch). Boundary conditions 
are imposed on the long edges (named red, green blue), setting 𝑉𝑉red = 1, 𝑉𝑉green = (−1 + 𝑖𝑖√3)/2, and 
𝑉𝑉blue = (−1 − 𝑖𝑖√3)/2. Thus, I imagine connecting the loops to the power grid. To find the electric field, 
whose divergence is zero, we solve 𝜕𝜕2𝑉𝑉/𝜕𝜕𝑥𝑥2 + 𝜕𝜕2𝑉𝑉/𝜕𝜕𝑦𝑦2 = 0 by a relaxation method on a 1500 × 1500 
array of complex 𝑉𝑉(𝑥𝑥,𝑦𝑦). In Processing, the assignment 𝑉𝑉[𝑥𝑥,𝑦𝑦] ← (𝑉𝑉[𝑥𝑥 + 1,𝑦𝑦]  +  𝑉𝑉[𝑥𝑥,𝑦𝑦 + 1] +  𝑉𝑉[𝑥𝑥 −
1,𝑦𝑦]  +  𝑉𝑉[𝑥𝑥,𝑦𝑦 − 1])/4  is applied for all non-boundary 𝑥𝑥,𝑦𝑦, and repeated 100,000 times to let 𝑉𝑉 stabilize.  

Next, the equipotential lines of constant |𝑉𝑉| are found by tracing. The second set of lines consists of 
evenly-spread lines orthogonal to the equipotential lines. I find these by steepest descent. The field is coded 
in HSB color space, mapping |𝑉𝑉| to saturation and arg(𝑉𝑉) to hue, as shown in Figures 4(a,b). The field 
lines are superimposed on the colors of the triangle and hexagon, seam allowance is added, and all is 
transferred by sublimation print onto the fabric (before sewing and assembly). The result is in Figure 5(a). 

 

Mathematical Tableaux 
 
As an alternative content, I design six math tableaux (one for each of the six panels) which represent a 
variety of mathematical topics, from ancient to 20th century. Some are to be recognised by a wide audience, 
others are more specialistic. In order to structure each tableau in the same way and to respect the continuity 
of the edges, I deploy a schema proposed by the French psychoanalyst Jacques Lacan, who considers the 
Borromean link to be a possible model of the human psyche [6].  Lacan labels the loops as the Imaginary, 
the Symbolic, and the Real.  Imaginary refers to images, which I interpret in this art work as geometrical 
drawings. For Lacan, the Symbolic refers to language, signifiers, and power structures, but here, for me, it 
means equations and formulas. For Lacan, the Real is what resists being captured in images or symbolic 
forms. I interpret the Real as elements of ℝ. Indeed, many real numbers have no defining equations, even 
though we can define a minority such as the integers, the rational numbers, radicals, 𝜋𝜋, and e.  

The four small tableaux have one image, one equation, and one real number; the two large tableaux 
have two of each. For example, the Pythagorean tableau has the obvious triangle with two squares, the 
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equation 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2, and one real number, viz. a decimal approximation of √2. The six tableaux are: 
Pythagoras’ law, Golden ratio, Groups, Lambda calculus, Calculus, and Fractals. The writing, drawing, and 
colour scheme resemble those of a classical blackboard. The edges are again red, blue, and green. 

 

     
(a)                                                                                      (b) 

Figure 5: (a) Colored Seifert surface with field lines, (b)  Surface with math tableaux. 
 

Summary and Conclusions 
 
I made Borromean Seifert surfaces, overcoming practical hurdles, and combining craft and technologies 
such as laser cutting and sublimation printing. The term “implementing” from the title means making, but 
also filling (Latin implēre). The surface is filled by making connections to three-phase electricity, to 
psychoanalysis, and additionally for the surface of Figure 5(b), by the six mathematical tableaux. 
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