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Abstract
In their book Turtle Geometry, Abelson and diSessa formulate and prove the POLY Closing Theorem, which
gives an exact condition for when a path produced by the POLY program closes (initial and final turtle position
are equal) properly (initial and final turtle heading are equal). The POLY program repeats a translation (Move
command) followed by a rotation (Turn command). Their Looping Lemma states that any repeated turtle program is
rotation-symmetry equivalent to a POLY program. The POLY Closing Theorem and Looping Lemma are useful in
understanding and creating artistic motifs because repeating the same turtle program so that it closes properly, leads
to a rotationally symmetric path. In this article, we generalize their result to 3D. A surprising corollary is that when
repeating a non-closed non-proper turtle program, its path is closed if and only if it is proper.

Introduction

In Turtle Geometry [6][1], you command a (virtual) turtle to draw a path. A sequence of turtle commands is
also known as a turtle program, and it is way of defining a path. During execution of a turtle program, the
turtle has a state, defined by its position (a point) and its attitude, both of which can change over time. In 2D,
the attitude is fully determined by the turtle’s heading (a unit vector), but in 3D [8], there is additionally the
turtle’s normal (a unit vector, perpendicular to its heading, defining its relative up direction). For state 𝑠, we
denote its position by 𝑠.pos and its attitude by 𝑠.att. Our turtle obeys these commands:

• Move(𝑑): move distance 𝑑 forward in the direction of the current heading, changing only its position;
• Turn(𝜑): turn (yaw) clockwise by angle 𝜑 (about its current position/normal), changing only its heading;
• Roll(𝜓): roll clockwise about the current heading by angle 𝜓, changing only its normal (in 3D).

In the default initial state 𝐼, the turtle is positioned at the origin, with its heading along the positive X-axis
and its normal along the positive Z-axis. The final state after executing turtle program 𝑃 will be denoted by
𝐹 (𝑃). For turtle program 𝑃, we define:

• 𝑃 is closed when 𝐹 (𝑃).pos = 𝐼 .pos;
• 𝑃 is proper when 𝐹 (𝑃).att = 𝐼 .att;
• 𝑃 is properly closed when 𝐹 (𝑃) = 𝐼, i.e., when 𝑃 is closed and proper.

Note that in [1], the term closed is used for what we call properly closed.

Looping Theorem in 2D

In [1], turtle program POLY is defined by (Move(𝑑); Turn(𝜙))∗ using our notation, where the superscript ∗
indicates unbounded repetition. POLY has two parameters: a fixed distance 𝑑 and a fixed angle 𝜙. We now
rephrase some theorems from [1, §1.2, §1.3]:

Closed-Path Theorem The total turning along any properly closed path is a multiple of 360◦.
Proof: By definition, along any proper path (even non-closed) the total turning modulo 360◦ equals 0.
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Simple-Closed-Path Theorem The total turning in a simple (i.e., without self intersection) properly closed
path is ±360◦.

POLY Closing Theorem A path drawn by the POLY program with 𝑑 = 0 or 𝜙 mod 360◦ ≠ 0 will close
properly if and only if the total turning reaches a multiple of 360◦.
In [1], the authors prove this theorem in three ways, which are also explored in the book review [5].

Looping Lemma Any turtle program that is an unbounded repetition of a sequence of turtle commands, has
precisely the structure of the POLY program for appropriate parameter values 𝑑 and 𝜙.
Note however that repeating an arbitrary turtle program need not produce a mirror symmetric path,
whereas a closed POLY program does. So, the theorem is about rotational symmetry only.

It is insightful to generalize the POLY Closing Theorem to the repetition of an arbitrary program. We denote
the total turning of 𝑃 by Θ(𝑃). Then Θ(𝑃) taken modulo 360◦ equals the angle between the initial and final
heading after executing 𝑃. Consider the turtle program 𝑃 and its 𝑘-fold repetition 𝑃𝑘 , where 𝑃0 is the empty
program with 𝐹

(
𝑃0) = 𝐼. We now have that Θ

(
𝑃𝑘

)
= 𝑘 Θ(𝑃).

2D Looping Theorem The properties of 𝑃 being closed and being proper transfer to 𝑃𝑘 as follows.

𝑃 proper 𝑃 not proper
𝑃 closed 𝑃𝑘 properly closeda 𝑃𝑘 closed; 𝑃𝑘 proper ⇔ 𝑘 Θ(𝑃) mod 360◦ = 0a

𝑃 not closed 𝑃𝑘 proper, not closedb 𝑃𝑘 closed ⇔ 𝑃𝑘 proper ⇔ 𝑘 Θ(𝑃) mod 360◦ = 0a

aIn these cases, 𝑃𝑘 stays within a disk or annulus as 𝑘 → ∞.
bIn this case, 𝑃𝑘 stays inside a strip and wanders off to infinity as 𝑘 → ∞.

The supplementary material provides illustrations for each case. The key observations for the proof are:

• If 𝑃 is proper, then the final state of 𝑃 can be obtained from the initial state by a translation along the
vector from initial to final position.

• If 𝑃 is not proper, then the final state can be obtained from the initial state by a rotation about some
center 𝐶 by the angle \ = Θ(𝑃) mod 360◦. If 𝑃 is closed, that center is at the initial (and final)
position, and otherwise it can be constructed, as illustrated in Fig. 1, from the fact that the rotation angle
\ = ∠𝐼𝐶𝐹, and hence ∠𝐶𝐼𝐹 = 90◦ − \/2. Thus, the angular position w.r.t. 𝐶 and the heading change
by the same angle \, and therefore 𝑃𝑘 will be closed if and only if it is proper.

Legend
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Figure 1: Construction (see text) of rotation center 𝐶 when 𝑃 is neither closed nor proper.
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Looping Theorem in 3D

Before stating the Looping Theorem for 3D, we need to handle some preliminaries. The generalization of
POLY to 3D is (Move(𝑑); Roll(𝜓); Turn(𝜙))∗. We will, however, consider general 3D looping programs, that
repeat and arbitrary sequence 𝑃 of turtle commands. By Mozzi–Chasles’ Theorem [3, Ch. 7], there exists a
unique screw operation 𝑞, consisting of a rotation about ℓ by a directed angle \ and a translation parallel to
directed line ℓ over distance 𝑑, such that 𝑞 transforms the initial state into 𝑃’s final state: 𝐹 (𝑃) = 𝑞(𝐼). In
general, line ℓ does not pass through the turtle’s position. We denote 𝑃’s screw operation by Screw(𝑃), and
the line, angle, and distance of screw operation 𝑞 by 𝑞.ℓ, 𝑞.\, and 𝑞.𝑑. The line ℓ is also called the (Mozzi)
axis of the screw operation. The supplementary material shows how to construct ℓ, \, and 𝑑. Here are some
basic properties of screw operations.

• A rotation about line ℓ and a translation parallel to that same line ℓ commute. That is, their order is
irrelevant for the final result. In fact, you can combine them into a continuous motion along a helix
(also useful for the purpose of inter- and extrapolation).

• Changing all signs of a screw operation gives the same screw operation, that is, a screw operation with
(directed) line ℓ, translation distance 𝑑, and rotation angle \ is the same as the screw operation with line
−ℓ, translation distance −𝑑, and rotation angle −\.

• If 𝑑 = 0 and \ = 0, then the screw operation is the identity (which does nothing), and the choice of ℓ is
irrelevant (no line is needed; all lines are equivalent).

• If 𝑑 = 0 and \ ≠ 0, then the screw operation is a pure rotation.
• It 𝑑 ≠ 0 and \ = 0, then the screw operation is a pure translation, and only the direction of the line is

relevant, not its location in space (all parallel lines are equivalent).
• The screw operation 𝑟 = 𝑞𝑘 (i.e., 𝑞 repeated 𝑘 times ) has 𝑟.ℓ = 𝑞.ℓ, 𝑟.𝑑 = 𝑘 ∗ 𝑞.𝑑, and 𝑟.\ = 𝑘 ∗ 𝑞.\.

This also holds when 𝑘 is not an integer, which corresponds inter/extrapolation along a helix.

We are again interested in conditions for when 𝑃𝑘 is closed and/or proper as captured by the following
theorem. Also see the illustrations for each of the cases in the supplementary material.

3D Looping Theorem The properties of 𝑃 being closed and being proper transfer to 𝑃𝑘 as follows, where
we abbreviate 𝑑 = Screw(𝑃).𝑑 and \ = Screw(𝑃).\.

𝑃 proper (\ = 0) 𝑃 not proper (\ ≠ 0)
𝑃 closed, 𝑑 = 0 𝑃𝑘 properly closeda 𝑃𝑘 closed; 𝑃𝑘 proper ⇔ 𝑘\ mod 360◦ = 0a

𝑃 closed, 𝑑 ≠ 0 impossible impossible
𝑃 not closed, 𝑑 = 0 impossible 𝑃𝑘 closed ⇔ 𝑃𝑘 proper ⇔ 𝑘\ mod 360◦ = 0a

𝑃 not closed, 𝑑 ≠ 0 𝑃𝑘 proper, not closedb 𝑃𝑘 not closed; 𝑃𝑘 proper ⇔ 𝑘\ mod 360◦ = 0b

aIn these cases, 𝑃𝑘 stays within a ball as 𝑘 → ∞.
bIn these cases, 𝑃𝑘 stays inside a cylinder along the screw axis and wanders off to infinity as 𝑘 → ∞.

Proof Note that the screw axis takes up the same relative position and orientation with respect to the initial
state 𝐼 as to the final state 𝐹 (𝑃). (This is the main insight.) Consequently, Screw

(
𝑃𝑘

)
= Screw(𝑃)𝑘 . If

Screw(𝑃).𝑑 ≠ 0, then 𝑃𝑘 (including 𝑃1 = 𝑃) cannot be closed, since it moves away from the origin, parallel
to the screw axis. If Screw(𝑃).𝑑 = 0, then Screw(𝑃) is a pure rotation and all points 𝐹

(
𝑃𝑘

)
.pos lie in a plane

(which need not be perpendicular to the initial normal vector). So, we can apply the 2D Looping Theorem,
which immediately yields the desired results. (End of Proof)
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Corollaries

• If 𝑃 is not closed, then for all integers 𝑘 , 𝑃𝑘 is closed if and only if 𝑃𝑘 is properly closed.
• If 𝑃 is not closed and Screw(𝑃).𝑑 = 0, both the turtle’s position and attitude rotate by the same angle \

for each repetition of 𝑃. Hence, 𝑃𝑘 is closed (the final position equals the initial position) if and only if
the final attitude equals the initial attitude.

The Simple-Closed-Path Theorem mentioned for 2D does not generalize to 3D. It is possible to have 3D paths
without self-intersection and winding number unequal to ±1 (e.g., a trefoil knot; also see the supplementary
material). In 2D, it is easy to keep track of the total change in attitude, by adding all turn angles. In 3D,
the total effect of all Turn and Roll commands on the attitude is harder to compute. This is best done by
multiplying the quaternions associated with the Turn and Roll commands Or better still, use bivectors and
the geometric product from Geometric Algebra; see for instance [4].

Conclusion

We stated Looping Theorems in 2D and 3D Turtle Geometry. Although the mathematical results are not
new, the precise formulations as we have given them do not appear in [1]. We separated the notions of closed
and proper for turtle programs, This helped improve the formulation of the Looping Theorems, providing
further insight into these important theorems for creating rotationally symmetric paths. In particular, we
could formulate the somewhat counterintuitive result that a repeated non-closed non-proper turtle path is
closed if and only if it is proper. For (artistic) applications we refer to [9][7][2].
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