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Abstract
To make string-art cardioids and nephroids, we must divide a circle into n equal parts and connect all points k to
ak (modulo n). In this article we show that the best choice of n is one for which n is prime and a is a primitive root of n.

The cardioid is a beloved mathematical object. This heart-shaped curve is an epicycloid; it is traced by a
point on a circle rolling around the circumference of another circle of the same radius. It is the caustic in the
bottom of a coffee cup when light shines in from the brim of the cup. The main bulb of the Mandelbrot set
is a cardioid. Given a point P on a circle C, the envelope of circles with center on C passing through P is a
cardioid. It can even be formed as the envelope of lines. It is the last of these that will be our focus.

Begin by placing n equally-spaced points on a circle. Number them 0 through n−1. Draw line segments
between k and 2k for all k, doing arithmetic modulo n. The envelope of these lines is a cardioid. The
larger the n, the more clearly we see the curve. Figure 1(a) shows a cardioid obtained with n = 54 divisions.
This construction clearly lends itself to string art, as shown in Figure 1(b); in this case there are n = 59
equally-spaced nails with red string running between them.
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Figure 1: (a) A cardioid formed with n = 54, (b) a cardioid made from string and n = 59 nails, and
(c) a nephroid made using a = 3 and n = 53.

We can generalize this procedure by choosing an integer a ≥ 2 and drawing line segments (or running
string) between k and ak (mod n) for all k. Figure 1(c) shows the case a = 3 and n = 53. The envelope of
these lines is a nephroid. More generally, for a given a, the envelope is an epicycloid with a − 1 cusps. In the
literature, such figures are known as residue designs (see, e.g., [5], [3], [4], [2]).

To make one of these designs on paper, simply divide a circle into any number of equal parts and draw all
required lines with a ruler and pencil. Making one out of string is more complicated—and more interesting.

Let’s look at the process required to make the cardioid in Figure 1(b). After placing the 59 nails, start
with the string tied to nail 1 and run it to 2, then to 4, then to 8, and so on (doing all arithmetic modulo 59).
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The string will eventually return to the first nail. (The complete sequence is 1, 2, 4, 8, 16, 32, 5, 10, 20, 40,
21, 42, 25, 50, 41, 23, 46, 33, 7, 14, 28, 56, 53, 47, 35, 11, 22, 44, 29, 58, 57, 55, 51, 43, 27, 54, 49, 39, 19,
38, 17, 34, 9, 18, 36, 13, 26, 52, 45, 31, 3, 6, 12, 24, 48, 37, 15, 30, and 1.) Notice that the string does not
reach nail 0, which is good since 2 · 0 = 0 is a dead-end.

What if we tried to recreate the design in Figure 1(a) with 54 nails and string? The sequence would start
with 1, 2, 4, 8, 16, 32, 10, 20, 40, 26, 52, 50, 46, 38, 22, 44, 34, 14, 28, and 2, and then it would enter a cycle
of length 18. Two-thirds of the nails would remain unvisited.

These examples prompt a question: which integers 1 < a < n will yield a string art design requiring
one string? Restated mathematically, will {1, a, a2, a3 . . . , an−1} = {1, 2, . . . , n − 1} when computed modulo
n? Our earlier examples show that for a = 2 and n = 59 the answer is yes, for a = 3 and n = 53 the answer is
yes, and for a = 2 and n = 54 the answer is no. This question is not a geometric one but a number theoretic
one. Really we can rephrase the question as: For what integers 1 < a < n is it the case that

1. an−1 ≡ 1 mod n, but
2. ak ! 1 mod n for k = 1, 2, . . . , n − 2?

The set of integers modulo n, which we will write as Zn = {0, 1, 2, 3, . . . , n − 1}, is a group under
addition—0 is the additive identity, every element has an additive inverse, and so on. We can also multiply
elements in Zn. But Zn is not a group under multiplication because not every element has a multiplicative
inverse. For instance, 0 does not have a multiplicative inverse for any n; 2 does not have a multiplicative
inverse for any even value of n; and so on. The elements of Zn that have multiplicative inverses are precisely
those that are relatively prime to n. This set, which we denote Z×n , is a group under multiplication. The
number of elements between 1 and n − 1 relatively prime to n, and hence the order of the group Z×n , is φ(n),
where φ is Euler’s totient function.

Returning to our question, then, we would like to find integers 1 < a < n so that

1. φ(n) = n − 1, and
2. a is a generator of the group Z×n .

We know that property (1) is satisfied only when n = p is prime. So, our string art must, at a minimum,
have a prime number of nails. In this case, Z×p is a cyclic group with φ(p − 1) generators, and a generator
a is called a primitive root of n. Thus, we can rephrase our central question yet again: For what integers
1 < a < p, with p prime, is a a primitive root of p?

This question has a long an interesting history. Gauss introduced primitive roots in his 1801 Disquisi-
tiones Arithmeticae. In 1927 Emil Artin conjectured that if a is an integer not equal to −1 and is not a perfect
square, then it is the primitive root of infinitely many prime numbers. So assuming Artin’s conjecture is true,
if we want to obtain a cardioid (a = 2) we have infinitely many p to choose from so the circle of nails can
be strung with one string. The same is true when a is 3, 5, 6, 7, and 8. But Artin’s conjecture does not
apply when a is a square like 4 and 9. This conjecture is still an open problem for all a. (Interestingly, in
1967 Christopher Hooley proved that Artin’s conjecture would be true if the generalized Riemann hypothesis
is true ([1]).) Finding primitive roots for prime numbers is central to some number-theoretic encryption
schemes, although unlike for our string art, these situations are faced with extremely large prime numbers.
In general, finding integers k for which ak ≡ b mod n is known as a discrete logarithm problem.

For small a and p, it is not too difficult to use a brute force approach to check whether a is a primitive
root of p—with pencil and paper, using an Excel spreadsheet, using WolframAlpha, or with a little computer
code. For larger p we can use tools from number theory to streamline the process, but we will not discuss
those techniques here. It is also possible to look online. The On-Line Encyclopedia of Integer Sequences has
entries for the primes with primitive roots 2 (sequence A001122), 3 (A019334), 5 (A019335), 6 (A019336),
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7 (A0193377), 8 (A019338), 10 (A001913), and more. For instance, the primes less than 100 that have
primitive root 2 are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, and 83.

What if we want to make a nephroid (a = 3) using a circle of 67 nails? A quick check shows that 3 is
not a primitive root of 67. Indeed, 3 generates the proper subgroup

H = {1, 3, 5, 8, 9, 14, 15, 22, 24, 25, 27, 40, 42, 43, 45, 52, 53, 58, 59, 62, 64, 66}

of Z×67. For our string art, that means we could use one piece of string to connect these 22 values. This string
is shown in blue in Figure 2.

Figure 2: The case of n = 67 and a = 3 requires three strings

This leaves 45 nails unvisited. Fortunately, because H is a subgroup of Z×67, we can partition the group
Z×67 into [G : H] = |G |/|H | = 3 disjoint cosets. (In [4], Moore also used ideas from group theory, including
cosets, to describe the mathematics of residue designs.) In particular, take any value not in H, 2, say, and
multiply every element of H by this value. This produces the coset

2H = {2, 6, 10, 13, 16, 17, 18, 19, 23, 28, 30, 37, 39, 44, 48, 49, 50, 51, 54, 57, 61, 65}.

An equivalent way of obtaining this coset, and one more useful to us, is to start with 2 and repeatedly multiply
by 3, obtaining 2H = {2, 2 · 3, 2 · 32, . . . , 2 · 3n−1}, which we then reduce modulo 67. This means that after
tying off our first string, we can start a second string at a value that doesn’t already have string, 2 in this case,
and repeatedly multiply by 3 to connect all the values in the coset. This string pattern is shown in green in
Figure 2. Finally, take any element not in either H or 2H, 4, say, and multiply every element of H by this
value to obtain

4H = {4, 7, 11, 12, 20, 21, 26, 29, 31, 32, 33, 34, 35, 36, 38, 41, 46, 47, 55, 56, 60, 63}.

The corresponding string pattern is shown in red in Figure 2.
Table 1 lists all the primes p less than 100 along the top. Each row corresponds to an a-value. Then

each entry in the table is the index of the subgroup generated by a in the group Z×p. Equivalently, it gives the
number of strings required to make the corresponding piece of string art. The cells colored green are those
that can be strung with one piece of string. That is, they correspond to the primitive roots a of the prime p.

Readers are encouraged to make their own string art. Using a board, nails, and string is one method. A
more accessible approach is to use string and cardboard with slits cut along the rim, as shown in Figure 3. One
thing to be aware of with this approach is that when we complete the first circuit with the string, the design
shows only half the lines because half run along the back side. So we need to follow the circuit a second time
with the string sitting on the opposite side of the cardboard. In the case of the cardioid in Figure 3(a), for
instance, because n − 1 = 58 is even, the string running from 30 to 1 would be behind the cardboard, and the
following segment would be above the cardboard—just like the first segment. We want the sides switched,

Residue Designs, String Art, and Number Theory

367

https://oeis.org/A019337
http://oeis.org/A019338
http://oeis.org/A001913


Table 1: The number of strings required for a disk with p nails (columns) using the multiplicative factor a
(rows). The green cells indicate the a-values that are primitive roots of p.

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
2 1 1 2 1 1 2 1 2 1 6 1 2 3 2 1 1 1 1 2 8 2 1 8 2
3 1 1 2 4 1 1 2 1 1 2 5 1 2 1 2 6 3 2 6 1 2 1 2
4 2 2 2 2 4 2 2 2 6 2 4 6 2 2 2 2 2 2 8 2 2 8 4
5 1 2 3 1 2 1 2 10 1 2 1 1 1 2 2 3 14 1 2 1 2 1
6 3 1 1 1 2 2 2 5 9 1 14 2 2 1 1 2 2 2 1 1 1 8
7 1 1 1 6 1 4 2 4 1 7 2 2 2 1 1 1 3 1 2 1 1
8 1 3 2 3 2 1 6 3 2 3 2 1 1 3 3 2 24 6 1 8 6
9 2 4 2 2 2 2 2 4 10 2 2 2 2 12 6 2 12 2 2 2 4
10 5 2 1 1 1 1 2 12 8 2 1 4 1 1 2 2 9 6 2 2 1

so instead, run the string from 30 to 2, and then continue 2, 4, 8, and so on. When we reach 1 again, the
cardioid is finished. According to Table 1, the p-values 53, 59, and 83 would be good choices for a variety of
a-values, but the reader is encouraged to use the methods in this article to help choose their optimal value.

(a) (b)

Figure 3: (a) A cardioid made from string and cardboard using n = 59 and (b) a nephroid using n = 53.
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