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Abstract

When the 3D Menger sponge is sliced with a suitably chosen diagonal plane, a novel 2D fractal is obtained.
In this work, I generalize this result by exploring the 3D fractal structures obtained by slicing two distinct
4D generalized Menger sponges with suitable hyperplanes. The resulting fractals are either etched in glass
or 3D printed in precious metals and used to create fractal art. Analytical results are derived presenting the
mathematics behind the art, including symmetries of the 3D cross-sections.

Introduction

(a) (b)

Figure 1: 3D Menger sponge fractal (with recursion depth three) 3D printed in steel in two halves held
together with magnetism. In (a), we see the full sponge, while in (b) the two halves have been

pulled apart. The diagonal cross-section reveals a novel 2D fractal.

The Menger sponge is a well known fractal first described in 1926 by Karl Menger [8] (see [6, pg. 111-116]
for an English translation), and may be viewed as a type of three-dimensional generalization of the Cantor set
[7]. In 2007 it was shown by Sébastien Pérez-Duarte that a 3D Menger sponge sliced along an appropriately
selected diagonal plane yields a novel 2D fractal consisting of a hexagon with a fractal pattern of “star of
David” holes; see Figure 1 (or go to Sébastien’s flickr page [2]) for an illustration. This discovery subsequently
appeared in the New York Times [4], and an excellent explanation may be found in the video “Mathematical
Impressions: The Surprising Menger Sponge Slice” by George Hart [1].

This begs the question - if a suitably defined 4D generalized Menger sponge is sliced with a suitably
chosen hyperplane, might similarly interesting novel 3D fractals be found? It is the purpose of this paper to
address this question, and to showcase some of the fractals that may be constructed in this fashion. A short
film containing animations of said fractals can be found here [3].
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Notation
• Π𝑛

𝑐 - the (𝑛 − 1)-dimensional hyperplane given by {®𝑥 ∈ R𝑛 :
∑𝑛

𝑖=1 𝑥𝑖 = 𝑐}.
• 𝐶𝑛 - the 𝑛-dimensional Cantor set (consisting of the 1D Cantor set Cartesian producted with itself 𝑛

times). If 𝑛 = 1 we write 𝐶 rather than 𝐶1.
• 𝑀𝑛

𝑘
- the 𝑛-dimensional Menger sponge of type 𝑘 , defined below in Definition 2.

(a) (b)

Figure 2: Computer rendering of the non-standard 3D Menger sponge 𝑀3
2 , with a recursion depth of two.

The holes are all interior cavities invisible from the outside. In (a), we render the outer shell in
transparent blue while the interior cavities are rendered in grey. In (b), only the interior cavities

are shown.

The n + 1 Possible n-Dimensional Menger Sponges and Some of Their Properties

The Menger sponge is typically defined by the following recursive procedure:

1. Start with a cube.
2. Divide the cube into a 3 × 3 × 3 Rubik’s cube of 27 smaller cubes.
3. Remove the middle cube from each face, as well as the cube in the center of the Rubik’s cube.
4. Recurse on the 20 remaining cubes.

While intuitive and geometrically clear, this characterization does not yield efficient algorithms and is difficult
to generalize to higher dimensions. Therefore, in this work I use an equivalent characterization based on the
base 3 decimal expansions of the coordinates of points making up each fractal. To facilitate this, I make the
following definition:

Definition 1. Given 𝑖 ∈ N and 𝑥 ∈ [0, 1], we define

𝛿𝑖 (𝑥) =
{

1 if the 𝑖th digit to the right of the decimal point in the base three expansion of 𝑥 is a 1,
0 otherwise.

With this definition, the standard 3D Menger sponge 𝑀3 may be defined as

𝑀3 = {(𝑥, 𝑦, 𝑧) ∈ [0, 1]3 : for all 𝑖 ∈ N we have 𝛿𝑖 (𝑥) + 𝛿𝑖 (𝑦) + 𝛿𝑖 (𝑧) ≤ 1}.

With this in mind, for each 𝑛 ∈ N I define 𝑛 + 1 different possible 𝑛-dimensional Menger sponges:
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Definition 2. Let 𝑛 ∈ N and let 𝑘 be an integer obeying 0 ≤ 𝑘 ≤ 𝑛. Then we define the 𝑛-dimensional
Menger sponge of type 𝑘 as

𝑀𝑛
𝑘 =

{
®𝑥 ∈ [0, 1]𝑛 : for all 𝑖 ∈ N we have

𝑛∑︁
𝑗=1

𝛿𝑖 (𝑥 𝑗) ≤ 𝑘
}
. (1)

Notice that for all 𝑛 ∈ N we have 𝑀𝑛
0 = 𝐶𝑛, the 𝑛-dimensional Cantor set, while 𝑀𝑛

𝑛 = [0, 1]𝑛, the 𝑛-
dimensional cube. The Sierpiński carpet and the standard Menger sponge are recovered as 𝑀2

1 and 𝑀3
1 ,

respectively, while 𝑀3
2 yields a non-standard 3D Menger sponge in which all of the holes are hidden cavities

invisible from the outside - see Figure 2.
Intuitively, the parameter 𝑘 controls the “hole-iness” of a Menger sponge. Considering the case 𝑛 = 3,

we note that on the one extreme, we obtain Cantor dust when 𝑘 = 0, while on the other extreme, we obtain a
solid cube when 𝑘 = 3. When 𝑘 = 1, we obtain the standard Menger sponge, which has enough holes to be
interesting, but not so many as to be impossible to 3D print. Increasing to 𝑘 = 2 results in Figure 2 - here
there are plenty of holes, but they are all cavities invisible from the outside.

Remark 1. It is worth mentioning that Karl Menger also considered 𝑛-dimensional Menger sponges of type
𝑘 in his original work [8] and that his definition is equivalent to the one I have provided in Definition 2.
Moreover, he goes further and proves that the integer 𝑘 is the topological dimension (not to be confused with
fractal dimension) of the resulting set. This fact does not seem to be widely known, however; I was unaware
of it until late in this project.

The following proposition generalizes the observation that each face of a standard 3D Menger sponge is a
Sierpiński carpet, and that the holes of the 3D Menger sponge are given by three mutually orthogonal copies
of the holes in the Sierpiński carpet cartesian producted with [0, 1] along a third dimension.

Proposition 1. Suppose 𝑘 < 𝑛. Then each face of a 𝑀𝑛
𝑘

Menger sponge is a 𝑀𝑛−1
𝑘

Menger sponge. Moreover,
for 𝑘 < 𝑛 − 1 the holes of an 𝑀𝑛

𝑘
Menger sponge are equal to the union of the holes in each face cartesian-

producted with [0, 1] along the axis omitted from the face; hence they are visible from the outside. On the
other hand, if 𝑘 = 𝑛 − 1, the holes are interior cavities equal to [0, 1]\𝐶 cartesian-producted with itself 𝑛
times.

Proof. By Definition 2, a point ®𝑥 ∈ 𝑀𝑛
𝑘

is part of a hole if 𝛿𝑖 (𝑥 𝑗) = 1 for all 𝑖 ∈ N for at least 𝑘 +1 components
of ®𝑥. So long as 𝑘 < 𝑛 − 1, this leaves one free component which can be anything, from which the proof of
the claim in the case 𝑘 < 𝑛− 1 easily follows. On the other hand, if 𝑘 = 𝑛− 1 there is no such free coordinate
and therefore — as neither 0 nor 1 have have any 1s in their base 3 expansion — holes are not achievable
on faces. It follows that every face is a copy of [0, 1]𝑛−1 = 𝑀𝑛−1

𝑛−1 , while any holes (if they exist) are interior
cavities. Finally, the condition 𝛿𝑖 (𝑥 𝑗) = 1 for all 𝑖 ∈ N is equivalent to 𝑥 𝑗 ∈ [0, 1]\𝐶, which shows that
cavities do exist and are of the form claimed. □

From now on I recenter the Menger sponge at the origin and scale it by a factor of two, so that it is a subset
of [−1, 1]𝑛 rather than [0, 1]𝑛.

Understanding the Diagonal Cross-Sections of the 3D Menger Sponge and its
Generalizations: Configurations of n Mutually Orthogonal Cylinders in n-dimensional space

It is worth thinking about why we obtained the diagonal cross-section in Figure 1(b), and what we expect to
obtain in higher dimensions. In a nutshell, Figure 1(b) is obtained because:
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(a) (b)

Figure 3: In (a), we see that three mutually orthogonal square-based cylinders intersected with a suitable
diagonal plane yields a hexagram. In (b), we show the result of four mutually orthogonal

cube-based hypercylinders in R4 intersected with a suitable diagonal hyperplane — a stellated
octahedron.

1. A cube (axis-aligned and centered at the origin) sliced with the plane 𝑥 + 𝑦 + 𝑧 = 0 yields a regular
hexagon.

2. A collection of three mutually orthogonal square-based cylinders (axis-aligned and centered at the
origin), when intersected with the same plane, yields a “star of David” (a compound of two triangles).
See Figure 3(a) for an illustration.

3. The 3D Menger sponge is a subset of the cube and its holes contain many such triplets of mutually
orthogonal cylinders, and many of them are centered on the plane 𝑥 + 𝑦 + 𝑧 = 0.

When reasoning about 3D cross-sections of 4D Menger sponges, it is therefore reasonable to ask ourselves
the following questions:

1. What 3D shape is obtained from a hypercube (axis-aligned and centered at the origin) when it is sliced
with the hyperplane 𝑥 + 𝑦 + 𝑧 + 𝑤 = 0? Ans: an octahedron (I leave it to the reader to verify this and
similar claims using their favorite mathematical software package).

2. What 3D shape is obtained by intersecting four mutually orthogonal cube-based cylinders (axis-aligned
and centered at the origin) with the hyperplane 𝑥 + 𝑦 + 𝑧 + 𝑤 = 0? Ans: a stellated octahedron — also
called stella octangula — a kind of 3D “star of David” consisting of a compound of two tetrahedrons
with eight points in total [5, pg. 47-48]. See Figure 3(b) for an illustration.

3. Do the the holes in the 4D Menger sponge contain many such quadruplets of mutually orthogonal
cylinders, and if so are many of them centered on the plane 𝑥 + 𝑦 + 𝑧 + 𝑤 = 0?

If the answer to the last question is “yes,” then we might reasonably expect the 3D diagonal cross-section of
a 4D Menger sponge to consist of an octahedron with a fractal pattern of stellated octahedron cavities. As
we will we see shortly, this is true of exactly one of the five possible 4D Menger Sponges, and the resulting
pattern is indeed what we expect. However, arguably even more interesting sections are obtained from a
different variant of the 4D Menger sponge that does not meet the above requirement.
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(a) (b) (c)

Figure 4: 3D cross-section of one type of 4D Menger sponge—namely 𝑀4
2 —with a diagonal hyperplane

bisecting the hypercube, visualized as a glass engraving. The fractal consists of an octahedron
(outer shell) with stellated octahedron interior cavities. There is one large star in the center,

surrounded on all sides by smaller ones. For clarity, the outer octahedron is a wireframe, and in
the rightmost photo the smaller stars are too.

Symmetry of 3D Diagonal Cross-Sections of 4D Menger Sponges

Before examining the 3D cross-sections of two types of 4D Menger sponges in the next section, we first
consider their symmetry. This will give us an idea of what to expect and help us to understand them.

Proposition 2. The 3D cross-sections 𝑀4
𝑘
∩ Π4

𝑐 possess tetrahedral symmetry for all valid values of 𝑘 .
Moreover, if 𝑐 = 0, octahedral symmetry is attained.

Proof. Let us denote the cartesian coordinates of R4 by ®𝑥4, and note that the plane Π4
𝑐 may be parameterized

by 3D orthonormal coordinates ®𝑋3 which are related to the coordinates ®𝑥4 by

®𝑥4 = 𝐴 ®𝑋3 + ®𝑏, ®𝑋3 = 𝐴𝑇 ®𝑥4, where 𝐴 =
1
2


1 1 −1
−1 −1 −1
1 −1 1
−1 1 1

 and ®𝑏 =
𝑐

4


1
1
1
1

 .
Any operation that leaves both 𝑀4

𝑘
and Π4

𝑐 invariant must also leave 𝑀4
𝑘
∩Π4

𝑐 invariant. Clearly the group 𝑆4
of permutations of the components of ®𝑥4 does this for any 𝑐 ∈ R. To understand what this means for our 3D
cross-sections, note that the permutation matrix 𝑃𝑖 𝑗 : 𝑒𝑖 → 𝑒 𝑗 (here 𝑒𝑖 is the 𝑖th basis vector of R4) induces
the following map within Π4

𝑐:
®𝑋 ′

3 = 𝐴𝑇𝑃𝑖 𝑗𝐴 ®𝑋3.

Next, let ®𝑎𝑖 denote the 𝑖th row of 𝐴. It is an exercise in algebra to show that the above map takes ®𝑎𝑖 to ®𝑎 𝑗 and
vice-versa. Moreover, the set { ®𝑎𝑖}4

𝑖=1 forms the vertices of a tetrahedron, and hence the induced map above
is precisely the set of symmetries of a tetrahedron. On the other hand, if 𝑐 = 0 then the map ®𝑥4 → −®𝑥4 also
leaves 𝑀4

𝑘
∩ Π4

𝑐 invariant, and hence the induced symmetries within the 3D hyperplane are

±𝐴𝑇𝑃𝑖 𝑗𝐴.
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The set {±®𝑎𝑖}4
𝑖=1 forms the vertices of a stellated octahedron, and the induced map above are its symmetries.

A stellated octahedron has the same symmetry group as an octahedron, so for 𝑐 = 0 we have octahedral
symmetry.

□

(a) (b) (c)

(d) (e)

Figure 5: 3D cross-sections of a second type of 4D Menger sponge— namely 𝑀4
1 —with the hyperplane

𝑥 + 𝑦 + 𝑧 + 𝑤 = 𝑐. In (a) and (b) the 𝑐 = 1 cross section is illustrated with 3D prints in two types
of materials. In (c), we show a 3D print of the cross section with 𝑐 = 5

3 , while (d) and (e) are 3D
renderings of the sections with 𝑐 = 0 and 𝑐 = −2.0659 respectively. Notice that all sections have
tetrahedral symmetry, while at 𝑐 = 0 octahedral symmetry is attained. For animated versions of

additional cross-sections, please see the short film [3].
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Two Varieties of 4D Menger Sponges and Their Respective 3D Cross-Sections

Specializing (1) to the case 𝑛 = 4 and throwing out the cases 𝑘 = 0 and 𝑘 = 4 as uninteresting, we are left
with three possible Menger sponges in four dimensions (corresponding to 𝑘 = 1, 2, 3). The case 𝑘 = 3 yields
a simple fractal in which the central hypercube of a 3 × 3 × 3 × 3 hyper-Rubik’s cube is recursively removed,
and we similarly throw it away as uninteresting. This leaves us with the two choices 𝑀4

1 and 𝑀4
2 to work

with.
We now ask ourselves “of these two possible 4D Menger sponges, which one meets the requirements of

the discussion below Figure 3?” By Proposition 1, each face of 𝑀4
1 is the standard 3D Menger sponge 𝑀3

1 ,
while each face of 𝑀4

2 is the non-standard 3D Menger sponge 𝑀3
2 shown in Figure 2. Also by Proposition 1,

the holes in 𝑀4
2 will consist of quadruplets of 4D cylinders each of which has a cube as a base - whereas the

holes in 𝑀4
1 will be more complex. It is therefore 𝑀4

2 —and not 𝑀4
1 —that we expect to give a fractal consisting

of an octahedron with stellated octahedron cavities when intersected with the hyperplane 𝑥 + 𝑦 + 𝑧 + 𝑤 = 0.
This is indeed the case, and the result is illustrated in Figure 4, by means of a glass engraving. Note the
octahedral symmetry, as expected in light of Proposition 2.

This is arguably the most natural generalization of the 2D cross-section discovered by Sébastien Pérez-
Duarte. Instead of a 2D six-sided filled convex polygon with a fractal pattern of six-pointed 2D star holes and
hexagonal symmetry, we have a 3D solid eight-sided convex polygon with a fractal pattern of eight-pointed
3D star cavities and octagonal symmetry. However, being the most natural generalization isn’t necessarily
the same as being the most interesting generalization.

While the results for the 4D Menger sponge 𝑀4
2 are intuitive and expected, those of 𝑀4

1 are—to the
author at least—surprising. Figure 5 gives examples of slices for a few values of 𝑐, some of them 3D printed,
some of them 3D renderings. However, what I am able to illustrate in one figure is highly limited - see the
short film [3] for additional cross-sections.

Notice that as expected in light of Proposition 2, all cross sections have tetrahedral symmetry. The value
𝑐 = 1 gives a particularly nice result - the outer solid is a truncated tetrahedron with faces consisting of four
regular hexagons and four equilateral triangles. The holes in this case are not interior cavities, but rather
pierce the outer shell in such a way that each of the four hexagonal faces has—remarkably—the same pattern
of holes as we found in the case of the diagonally chopped 3D Menger sponge 𝑀3

1 . In the next section, we
explore the mathematics behind this strange result.

Relating Cross-Sections of n-Dimensional Menger Sponges
to Those of (n − 1)-Dimensional Sponges

The key to understanding the cross-sections of 𝑀4
1 illustrated in Figure 5 lies in the following theorem, in

which an explicit relationship between diagonal cross-sections of 𝑀𝑛
𝑘

and those of 𝑀𝑛−1
𝑘

is derived.

Theorem 1. The (𝑛 − 2)-dimensional faces of of 𝑀𝑛
𝑘
∩Π𝑛

𝑐 consist of 𝑛 copies of 𝑀𝑛−1
𝑘

∩Π𝑛−1
𝑐+1 and 𝑛 copies

of 𝑀𝑛−1
𝑘

∩ Π𝑛−1
𝑐−1 .

Proof. The faces of 𝑀𝑛
𝑘
∩ Π𝑛

𝑐 occur when 𝑥 𝑗 = ±1 for some 𝑗 ∈ {1, . . . , 𝑛}. Substituting 𝑥 𝑗 = ±1 into Π𝑛
𝑐

gives a copy of Π𝑛−1
𝑐∓1 , while 𝑀𝑛

𝑘

��
𝑥 𝑗=±1 is a copy of 𝑀𝑛−1

𝑘
by Proposition 1. Hence, the 𝑛 faces corresponding

to 𝑥 𝑗 = 1 for some 𝑗 are all copies of 𝑀𝑛−1
𝑘

∩ Π𝑛−1
𝑐−1 , while the 𝑛 faces corresponding to 𝑥 𝑗 = −1 for some 𝑗

are all copies of 𝑀𝑛−1
𝑘

∩ Π𝑛−1
𝑐+1 . □

Theorem 1 implies that 𝑀4
1 ∩ Π4

1 has four faces that are copies of 𝑀3
1 ∩ Π3

0 and another four faces that are
copies of 𝑀3

1 ∩ Π3
2 . We already know that the former is a hexagon with a fractal pattern of star of David

holes. The latter turns out to be an equilateral triangle (the sides of which are the same length as those of
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(a) (b) (c)

Figure 6: The 3D cross-section 𝑀4
1 ∩ Π4

1 illustrated in Figure 5(a)-(b) has, by Theorem 1, four 2D faces
equivalent to 𝑀3

1 ∩ Π3
0 (a), and four 2D faces equivalent to 𝑀3

1 ∩ Π3
2 (b). These may be joined

together to form a 2D net (c) which, when folded together in 3D space, yields a truncated
tetrahedron with a fractal pattern of star of David holes on every face.

the hexagon) with a similar fractal pattern of star of David holes. These eight 2D shapes have to be woven
together in 3D in such a way that, if we fill in the holes, the result would be a convex polyhedron with
tetrahedral symmetry. The only possible way of doing this yields a regular truncated tetrahedron, with a
fractal pattern of star of David holes on each face - see Figure 6. Indeed, this is exactly what we observed in
Figure 5(a)-(b). However, it holds generically - similar reasoning applies to every cross-section in Figure 5.

Conclusions and Future Work

In this work I have generated fractal art based on the 3D diagonal cross-sections of two distinct varieties of
4D Menger sponge. Analytical results have been presented that help us to understand them. Theorem 1,
which relates diagonal cross-sections of Menger sponges in 4D to those in 3D is particularly illuminating.
Proposition 2, which examines the symmetry of the cross-sections, is also helpful. Work on an extension to
the 5D case is already underway.
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1926, pp. 476–482.

Hocking

298

https://www.simonsfoundation.org/2012/12/10/mathematical-impressions-the-surprising-menger-sponge-slice/
https://www.simonsfoundation.org/2012/12/10/mathematical-impressions-the-surprising-menger-sponge-slice/
https://flickr.com/photos/sbprzd/1432723128/
https://youtu.be/dShqphLP764
https://www.nytimes.com/2011/06/28/science/28math-menger.html
https://books.google.com.tw/books?id=iWvXsVInpgMC

