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Abstract  

I describe an exploration of the aural characteristics of ceramic structures with a variety of geometric forms, from 
simple test rectangles, rings, and tubes to sculptural bell-like forms, including polyhedra. Frequency spectra were 
compared after bisque firing and after an additional cone 6 firing. Young’s modulus was determined for both cases, 
with a near doubling observed after cone-6 firing, from 11 to 22 × 109 N/m2. This led to a near doubling of 
frequencies, as well as clearer tones, with reduced broad spectral features surrounding the dominant resonances. 
The purest tone was obtained with a truncated polar zonohedron that approximates a traditional bell form.  

 
Introduction 

Bells are common in many cultures and date from at least the 2nd millennium BCE [2,6]. Metal is the most 
popular choice for bells, but glass, wood, and ceramics have also been widely used. When ceramics is 
chosen as a bell material, that choice is often made for appearance rather than tone. Ceramics allow a wide 
variety of glazes, the ability to paint scenes (e.g., Delft Blue), and the relative ease of molding forms such 
as animal or human figures. Metal, comparatively, allows fabrication of a wide variety of forms and offers 
superior tone with long ring times. While everyone knows what a bell is in general terms, for the purposes 
of this paper it will be helpful to have a concrete definition. A bell is an object that, when directly struck, 
creates sound primarily by vibration of the object as a whole, without the use of strings or membranes 
[2][6].  

In addition to the geometry of a bell, material properties are key in determining how well bells ring. 
Young’s modulus measures the tensile or compressive stiffness of a solid material when a force is applied 
lengthwise [5]. Density is also an important factor. Struck bells lose energy both by sound radiation and by 
internal loss mechanisms [2]. Many metals ring especially long because they have low internal damping, 
in contrast to ceramics or wood.  

Due to their expense and importance, the properties of large, metallic church bells have been studied 
in depth. The rich sound of church or carillon bells results from many harmonics (often referred to as 
“partials”), which are tied to different vibrational modes. The acoustically-important partials in the sound 
result from modes in which the motion is primarily normal to the bell’s surface [4]. For the fundamental 
(prime) frequency, which is close to the strike pitch, the rim of the bell distorts from circular to elliptical, 
and there is also a single nodal circle.   

The pitch people perceive when listening to a bell is complicated, depending on the human hearing 
mechanism, and can vary from person to person. It’s frequently not that of a constituent partial but rather a 
systhesis of a number of partials [4], an effect known as virtual pitch. Furthermore, the different vibrational 
modes can decay at significantly different rates, resulting in a changing sound from the time a bell is struck 
to the time it drops below the listerner’s hearing threshhold [6].  

Vibrational modes have been calculated and measured for simple geometries such as square and 
circular plates [8]. These modes correspond to physical deformations, with regions that remain relatively 
stationary (nodes) and regions where the motion is most intense (antinodes) [6]. Vibrational modes have 
also been characterized in classical bell forms [6]. My primary concern in this work is how the bells sound, 
but since that cannot be conveyed in a paper, frequency spectra are presented. In this work I used an online 
sound analyzer [1] to measure the spectra of various ceramic test structures and bells. The spectra shown 
were captured shortly (typically a couple of tenths of a second) after the initial loud clack of the strike 
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decayed. While the frequency resolution is relatively poor, it’s adequate for the semi-quantitative analysis 
presented here. In this paper, the term “dominant frequency” will refer to the frequency of the largest peak 
in a given spectrum.  

The purpose of this paper is to explore possibilities for mathematics-inspired sculptural ceramic forms 
that might also perform well as bells. As far as I know there is no published systematic study of the 
properties of ceramic bells. There are many parameters that can be varied, including type of clay, firing 
temperature, type of glaze, shape of the bell, and size and thickness of the bell. Since the bells examined 
here are relatively small, not metallic, and do not possess classical bell shapes, it is difficult to draw 
comparisons to the detailed studies in the literature performed on church bells. 

All of the structures described here were bisque fired and some subsequently fired at cone 6 using an 
unsanded white stoneware clay that goes by the name B-Mix. While the higher-temperature cone 10 is 
commonly used for functional pottery, cone 6 is often used for sculptural work to avoid effects like drooping 
or other distortions that can occur when clay becomes softer at higher temperatures. The structures with 
simple geometries were not glazed, while those intended as sculptural bells were partially or fully glazed.  

 
Ringing of Simple Geometries 

Three series of three ceramic structures were built and bisque fired to compare simple geometries and 
dimensions. Figure 1 shows these, rectangles of three lengths, flat rings of three diameters, and open tubes 
of three lengths. The rectangles have thickness ≈ 6 mm, width of ≈ 4.8 cm, and lengths of ≈ 19.2 cm, 14.2 
cm, and 9.6 cm. The ringing was measured by suspending each object with string, striking each object with 
a hard rubber mallet, and then examining video recordings of the transient frequency spectra. An example 
is shown in Figure 2. For the bisque-fired bars, the respective dominant frequencies were 400 Hz, 700 Hz, 
and 1590 Hz. In musical terms, these roughly correspond to the piano notes G4 (the G just above middle 
C), F5, and G6. The dominant frequencies are assumed to be the fundamental frequencies, which is backed 
up by the location of the first harmonics, as discussed below.  
 

 
Figure 1:  Ceramic bars, rings, and tubes used in this study. 

 

For a free bar, the fundamental frequency (corresponding to the center of the bar deflecting in one direction) 
can be calculated to be approximately 1.028 (a/L2)/(E/r)1/2, where a is the thickness, L the length, E Young’s 
modulus, and r the density of the material [5]. In Figure 3, the frequency is plotted vs. 1/ L2 (leftmost line), 
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showing good agreement to the expected linear relationship. The slope of this line can be used to calculate 
Young’s modulus for this material, with the density calculated by measuring dimensions and weighing a 
bar. The result is shown in Table 1, with comparison to other common materials. Literature values for the 
Young’s modulus of ceramics deal with commercial materials, and the wide range of compositions and 
production processes lead to a wide range of values for E. As a result, a good comparison to this study was 
not found in the literature.  

 
Figure 2:  Frequency spectrum for the medium-length bar, approximately 0.2 sec. after striking: a) after 

bisque firing, and b) after firing at cone 6.  
 

 
Figure 3:  Fundamental resonant frequency for bisque-fired ceramic bars (open circles), rings (black-

filled circles), and cone-6-fired bars (red-filled circles; middle set). The straight lines are fits to the data 
with the additional requirement that they pass through the origin, since the frequencies must go to zero as 

the lengths becomes very large. 
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Table 1:  Density and Young’s modulus for some common materials (top four lines) [5] and the ceramic 
material used in this study, bisque fired and fired at cone 6. 

 

Material Density (kg/m3) Young’s Modulus (109 N/m2) 
Steel (ASTM-A36) 7860 200 
Aluminum 2710 70 
Glass 2190 65 
Wood (Douglas fir) 525 13 
Ceramic (bisque, this study) 2005 11.3 
Ceramic (cone 6, this study) 2180 22.2 

 

The unglazed bars were fired at cone 6 and retested. Pottery is typically fired twice, first at cone 04 (the 
bisque firing, with a maximum temperature around 1950°F or 1065°C) and then at a higher temperature for 
glazing. Cone 6 has a maximum temperature around 2230°F or 1220°C, and glazed pottery is often fired at 
the even higher-temperature cone 10 (2350°F or 1290°C). The fundamental frequencies after firing at cone 
6 are shown in Figure 3 in red-filled circles (the middle line). The frequencies nearly doubled for each bar. 
The weight and linear dimensions decreased by approximately 3% and 4%, respectively, causing a small 
increase in density. The higher temperature firing was found to nearly double Young’s modulus (Table 1), 
resulting in the near doubling of frequency. At the higher temperature, the fusing together of clay particles 
occurs, so the materials properties are quite different [7]. 

The first harmonic frequency (corresponding to half the bar deflecting in one direction and the other 
half in the opposite direction in a simple S shape) is expected to be approximately 2.76 times the 
fundamental [5]. For the bisque-fired medium-length bar (Figure 2), the expected frequency based on the 
fundamental is thus 2.76 ×	700 Hz = 1930 Hz, and a peak is found at 1920 Hz. 

For the circular rings I found dominant frequencies of 380 Hz, 800 Hz, and 2820 Hz. To compare this 
to the bar case, I used as the length parameter L the circumference of the circle measured in the middle of 
the ceramic band. The frequencies are plotted as a function of this length in Figure 3, again showing a linear 
relationship, though the fit is not as good as the bar case. A dominant tone was somewhat difficult to hear 
for the largest ring due to a broad spectrum of frequencies being present.  

The ceramic tubes did not yield clear results. The dominant frequency was nearly the same for each 
tube, around 1900 Hz. The tone was more muddled (a broad range of frequencies) for the long tube, getting 
clearer as the length shortened. The fact that the dominant frequency is about the same for each tube 
suggests that the loudest sound is due to an excitation of the circular-ring cross-sectional shape. Shorter 
tubes more nearly approximate rings, which may explain the clearer tone for the short tube. The three 
spectra are shown in Figure 4, where the exact values for the frequencies and amplitudes are not significant. 
Based on these results, a tube geometry does not appear to be a good choice for a ceramic bell. Note that 
metal tubes do work well as, for example, wind chimes. The difference is presumably due to materials 
differences, though such chimes also tend to be longer relative to their diameter. 

 

 Bells with Geometric Designs 
A variety of bells with strong geometric character were built and tested. The first two are relatively small 
(12-13 cm in height) and don’t deviate too far from conventional bell forms. The bell of Figure 5 has a 
three-fold shape reminiscent of some flowers and possessing negative curvature near the edges. It was 
glazed all over and fired at cone 6, and then equipped with a cylindrical maple clapper. This bell exhibits 
several sharp resonances, as seen in Figure 5. The dominant peak at 2580 Hz appears to be the fundamental. 
For a classical bell form, the 5160 Hz peak at twice the fundamental would be the octave, while the peak at 
6470 Hz, approximately 2.5 times the fundamental, would be the upper third [6]. The fifth should be at 1.5 
times the fundamental; the 4030 Hz peak is approximately 1.56 times the fundamental. In a canonical bell, 
in terms of nodes the fundamental and fifth have a single meridian, while the octave has two. The three 
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have, respectively, two, three, and four nodal circles [6]. The lack of circular symmetry would alter the 
shape of these nodes. The ring does not clearly sound like a single pitch to my ear, though I can discern a 
tone that corresponds to D5 on a piano keyboard (587 Hz). There is no peak at this perceived pitch, and it’s 
not clear how the frequency relates to the spectrum. 

 
Figure 4:  Frequency spectra for 5.7cm-diameter ceramic tubes of length (a) 18.5 cm, (b) 9.0 cm, and (c) 

4.5 cm. 
 

 
Figure 5:  Photograph of a glazed bell with a three-fold form, along with its frequency spectrum. The 

black arrow indicates the dominant perceived pitch after the final firing, corresponding to D5 on a piano 
keyboard. 
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It’s interesting to note that the pitch and, to my ear, the complexity of the tone both increased after glazing 
and firing at cone 6. (Unfortunately, the spectrum of this bell was not recorded after bisque firing.) Glazing 
involves not only coating with a different material, but a higher-temperature firing. I observed an increase 
in frequency in all structures upon higher-temperature firing.  

The second small bell is conical in shape. It was partially glazed because dipping in glaze conveniently 
illustrated two conic sections, the ellipse and parabola. The bell and its associated frequency spectrum are 
shown in Figure 6. The dominant peak could again be the fundamental, with the pair of second-highest 
peaks being the octave. The pronounced peak between the fundamental and octave observed in Figure 5 is 
absent in this case, perhaps reflecting the fact that the shape is less similar to a conventional bell. The ring 
of this bell sounds more like a single tone to my ear, with a perceived pitch of D5. Note this is two octaves 
below the dominant frequency and does not correspond to a peak in the spectrum.  

 
Figure 6:  Photograph of a partially-glazed conical bell, along with its frequency spectrum. The black 

arrow indicates the dominant perceived pitch after the final firing, corresponding to D5 on a piano 
keyboard. 

 

With the goal of achieving a low-pitched gong-like sound in a visually-compelling mathematical design, 
the Hilbert curve was used as the basis for a bell. A third-order curve was filled in to create the shape shown 
in Figure 7, which was cut from a slab of clay. The height of this structure after bisque firing was 21 cm, 
and the thickness 7 mm. The gong is struck with a hard rubber mallet (not shown). The resulting frequency 
spectrum of the bisque-fired gong is quite broad and lacking strongly-dominant resonances, as shown in 
Figure 7 in blue. After firing at cone 6 (in red), the most pronounced frequencies increased by approximately 
65% and became more pronounced relative to the broad overall spectrum. While the sound of the gong is 
complex, my ear discerned a tone at 165 Hz (E3 on a piano keyboard), which doesn’t correspond to one of 
the more pronounced peaks. 

Two larger polyhedron-based structures were built that roughly correspond to classical bell forms. One 
is based on a regular dodecahedron and the other on a polar zonohedron. One face of an approximately 17-
cm-diameter dodecahedron was left open, and a cylindrical purpleheart clapper was used (Figure 8). The 
frequency spectum of the bisque-fired bell is complex (Figure 8), with many peaks, resulting in a sound 
that does not evoke a single note. Firing at cone 6 increased the dominant frequency by about 80% and 
largely removed the broad band of frequencies, creating a clearer tone. Glazing and firing at cone 04 (a 
significantly lower temperature than cone 6) didn’t significantly change the frequency spectrum. My ear 
perceives tones corresponding to F4 and G4 on a piano keyboard, with the tone depending on which lower 
pentagonal face was struck. This is approximately two octaves below the dominant frequency of 1450 Hz.  
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Figure 7:  Photograph of a Hilbert-curve gong, along with its frequency spectrum. The blue curve is after 
bisque firing and the red curve (right-shifted peaks) after firing at cone 6. The black arrow indicates the 

dominant perceived pitch after the final firing, corresponding to E3 on a piano keyboard. 
 

 
Figure 8:  Photograph of a dodecahedron-based bell, along with its frequency spectrum. The blue curve 

is after bisque firing and the red curve (right-shifted peaks) after firing at cone 6. The black arrows 
indicates the dominant perceived pitches after the final firing, corresponding to F4 and G4 on a piano 

keyboard. 
 

A seven-fold geometry was used for the zonohedron, with the bottom two-and-a-half rows of rhombuses 
omitted.  Code written by George Hart [3] was used to generate a net to guide the cutting of a starting flat 
form from a slab of clay. The opening measures ≈ 13 cm in diameter. A relatively-large maple sphere was 
used as the clapper, as shown in Figure 9. The ring of this bell sounds relatively pure, with a dominant 
frequency after bisque firing (blue line) of 840 Hz and after cone-6 firing (red line) of 1500 Hz. The second-
largest peak after cone-6 firing is approximately 2.5 times that in frequency. The perceived pitch at 784 Hz 
(G5 on a piano keyboard) is not overly high, in contrast to the small bells. To my ear this was the most 
pleasing ring of the bells described here. The frequency spectra of Figure 9 are significantly simpler than 
those of the dodecahedron bell. Perhaps the sharp angles in the dodecahedron create a complicated set of 
relaxation modes. Cone-6 firing resulted in a purer tone, where purer is taken to mean a relatively small 
number of sharp peaks, without a broad shoulder of frequencies. From a materials perspective, this may 
indicate a removal or reduction of some loss modes as the clay densifies. Glazing and firing the zonohedron 
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bell a second time at cone 6 had minimal effect on the overall shape of the frequency spectrum but did 
result in shifts of the 1.5 kHz and 3.7 kHz peaks to 1.55 kHz and 3.94 kHz. 
 

 
Figure 9:  Photograph of a zonohedron-based bell, along with its frequency spectrum. The blue curve is 

after bisque firing and the red curve (right-shifted peaks) after firing at cone 6. The black arrow indicates 
the dominant perceived pitch after the final firing, corresponding to G5 on a piano keyboard. 

 
 

Summary and Conclusions 
This paper presents the results of a study of geometric ceramic bells. While long ring times have not been 
demonstrated, relatively loud rings with pleasant tone have been achieved. In addition, I’ve demonstrated 
the ability to control the perceived pitch over a relatively wide range. The structures that perform well have 
more-or-less traditional bell forms, with rounded cavities open at one end. A seven-fold polar zonohedron 
performed better than a regular dodecahedron, perhaps due to smaller dihedral angles. I’ve obtained values 
for Young’s modulus for typical stoneware and shown that it approximately doubles from bisque (cone 04) 
to cone 6 firing. Glazing and firing a second time appears to have minor effects on the sound of ceramic 
bells, at least when the glaze firing temperature does not exceed earlier firing temperatures. One area for 
future work would be to fill in the gap between simple geometric structures and sculptural forms with 
traditional bell forms. In addition, exploring the range of possibilities with different polar zonohedra would 
likely result in attractive bells with varying pitches. 
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