
Automating Crochet Patterns for Surfaces of Revolution

Megan Martinez1 and Amanda Taylor Lipnicki2

1Mathematics Department, Ithaca College, Ithaca, NY, USA; mmartinez@ithaca.edu
2Math and CS Division, Alfred University, Alfred, NY, USA; tayloral@alfred.edu

Abstract

A surface of revolution is created by taking a curve in the 𝑥𝑦-plane and rotating it about some axis. We develop
a program which automatically generates crochet patterns for surfaces by revolution when they are obtained by
rotating about the 𝑥-axis. In order to accomplish this, we invoke the arclength integral to determine where to take
measurements for each row. In addition, a distance measure is created to optimally space increases and decreases.
The result is a program that will take a function, 𝑥-bounds, crochet gauge, and a scale in order to produce a polished
crochet pattern.

Introduction

Physical models of mathematical objects allow the theoretical to become tangible. This project began as a
way to help students visualize the quadric surfaces by creating crochet models. As we tinkered with patterns
and calculations, we realized our methods were developing an algorithm to produce crochet patterns for
surfaces by revolution. We fully developed our methods into a CoCalc worksheet that produces crochet
patterns for surfaces of revolution.

Surfaces of revolution in fiber arts are not new. The question of creating knitting patterns to construct
surfaces of revolution was introduced by Amy F. Szczepański [2], who developed a method for giving the
number of stitches that should appear in each row of a pattern. Our work is different from hers in a few ways:
we use different methods for determining the number of stitches in a row and go further to produce a polished
crochet pattern. Our output looks like something you would find on Ravelry.com (a popular repository of
knitting and crochet patterns).

We endeavored to produce crochet instructions that would create a physical model as true to the theoretical
one as possible. This includes planning where to measure the circumference of a surface to emphasize local
minima and maxima, spacing increases and decreases to minimize distortion but keep instructions easy to
follow, and identifying problematic behaviors for our program. While our pattern specifically creates a
crochet pattern, it would be relatively straightforward to tinker with the output to read like a knitting pattern.
Practically, there is not enough different between the mechanics of the two crafts to greatly affect the work
we have done.

Accessing the Code
Our code is written in a Sage worksheet and freely accessed using CoCalc. The code is published in a
GitHub repository [1] and can be brought into CoCalc using the second link in the provided citation. The
“README.md” file has basic instructions for operating the code. If you select “Crocheting Surfaces of
Revolution (v13).sagews” you will see the code, but you must click “edit” to evaluate the code and work on
your own patterns. You can do this without a CoCalc account, though creating one is free.

Inputs & Crochet Terminology
Our program takes the following inputs:

Bridges 2023 Conference Proceedings

195

(a) (b) (c) (d)

Figure 1: Figure (a) shows a crocheted model with dimensions 3.25” × 2.5” × 2.5” where
𝑓 (𝑥) = cos(2𝑥) − 𝑥2

10 + 2, 𝑎 = −4, 𝑏 = 4, 𝑆 = 20, 𝑅 = 24, 𝑠𝑐𝑎𝑙𝑒 = 0.4 and Figure (c) shows a
crocheted model with dimensions 6” × 5.25” × 5.25” where 𝑓 (𝑥) = 𝑠𝑖𝑛(3𝑥)

2 + 2𝑥
3 , 𝑎 = 0, 𝑏 = 5.5,

𝑆 = 20, 𝑅 = 24, 𝑠𝑐𝑎𝑙𝑒 = 0.7. Figures (b) and (d) show the computer models of these surfaces.

• 𝑓 (𝑥) is the function that will be rotated about the 𝑥-axis to create the surface. The function 𝑓 (𝑥) should
be positive on (𝑎, 𝑏) and 𝑓 ′(𝑥) should be defined on [𝑎, 𝑏] in order for our code to function.

• 𝑎 is the 𝑥-value determining the start of the surface
• 𝑏 is the 𝑥-value determining the end of the surface.
• 𝑆 is the stitch gauge; that is, the number of stitches that fit in 4”
• 𝑅 is the row gauge; that is, the number of rows that fit in 4”
• 𝑠𝑐𝑎𝑙𝑒 is the measure of one unit in inches (this allows one to decide how large the model will be)

We have provided two examples of crocheted outputs from our program in Figure 1.
Our goal is to output a crochet pattern, so it is helpful to measure distances using the units of “rows” or

“stitches.” This means our program makes use of the crocheter’s individual gauge (the number of stitches
and rows that fit in a 4” crocheted square). In order to achieve an accurate surface, the crocheter should make
a gauge swatch using their yarn and crochet hook of choice. We have worked to minimize the techniques a
crocheter needs, so all of our shapes are crocheted in-the-round using the spiral method. The experienced
crocheter is encouraged to alter this by using a joining method, if desired. We use the following crochet
techniques and symbols:

• Sc: Single crochet. Sc5 would mean “single crochet 5 stitches.”
• Inc: Make two crochet stitches in one stitch; turns one stitch into two.
• Dec: Invisible decrease; turns two stitches into one.

We recommend that crocheters use a locking stitch marker to mark the beginning of each row. This is helpful
in knowing when you will move on to the next row of instructions.

Identifying Row Landmarks

The first order of business for our program is to identify 𝑥-values (which we call landmarks) where we will
measure the circumference of our surface. These correspond to each row of the crochet pattern.

Szczepański does this by approximating the curve defining the edges of a shape by using line segments of
a fixed length, ℎ, with one endpoint at (𝑥𝑖 , 𝑦𝑖) and the other where the curve intersects (𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2 = ℎ2

(an example of this is shown in Figure 2(a)). We take a different approach by using arclength calculations to
place the rows. We will use this to position rows at the local extrema of a function, as we will see in the next
section.

Martinez and Lipnicki

196

Throughout this paper, we will illustrate our program mechanisms by returning to an example with the
following set of inputs: 𝑓 (𝑥) = 𝑥3 + 2𝑥2 − 2𝑥 + 4, 𝑎 = −3, 𝑏 = 1, 𝑆 = 22, 𝑅 = 25, 𝑠𝑐𝑎𝑙𝑒 = 0.18.

(a) (b) (c)

Figure 2: The function 𝑥3 + 2𝑥2 − 2𝑥 + 4 plotted with 𝑥-landmarks that (a) use Szczepański’s method of
approximating the curve using circles to find equal-length secants, (b) segment the curve into

pieces with equal arclength, and (c) are placed at local extrama first and then placed to segment
the curve into pieces with equal arclength between the local extrema.

We begin by finding the arclength of our curve in rows:

𝐿 =
𝑠𝑐𝑎𝑙𝑒 · 𝑅

4

∫ 𝑏

𝑎

√︃
1 + (𝑓 ′(𝑥))2 𝑑𝑥 =

(0.15) (25)
4

∫ 1

−3

√︁
1 + (3𝑥2 + 4𝑥 − 2)2 𝑑𝑥 ≈ 16.162 rows. (1)

Notice 𝑠𝑐𝑎𝑙𝑒 is in inches/unit, 𝑅
4 is in rows/inch and our integral is in units. We round to 16 rows and

minimize the effect of that rounding by evenly placing the rows along the curve. We place an initial chain
row at 𝑥0 = −3, then include 16 more rows of instruction. The next row landmark, 𝑥1, is a distance of
16.162

16 ≈ 1.010 down the curve. In general

𝑠𝑐𝑎𝑙𝑒 · 𝑅
4

∫ 𝑥𝑖

𝑥0

√︃
1 + (𝑓 ′(𝑥))2 𝑑𝑥 = 𝑖 · 𝐿

[𝐿] ,

where [𝑥] denotes 𝑥 rounded to the nearest integer. This isn’t a very “nice” equation to solve algebraically, so
we use a “guess and check” protocol to find each 𝑥𝑖 accurate to two decimal places. To mitigate the effects
of rounding error, we always measure our arclength from 𝑥0 = 𝑎.

In our current example, we have rows at the following 𝑥-landmarks: 𝑥0 = 𝑎 = −3, 𝑥1 = −2.93, 𝑥2 =

−2.84, 𝑥3 = −2.76, 𝑥4 = −2.67, 𝑥5 = −2.56, 𝑥6 = −2.42, 𝑥7 = −2.25, 𝑥8 = −1.96, 𝑥9 = −1.34, 𝑥10 =

−1.01, 𝑥11 = −0.74, 𝑥12 = −0.48, 𝑥13 = −0.20, 𝑥14 = 0.22, 𝑥15 = 0.78, 𝑥16 = 𝑏 = 1.00. Each of these values

have been plotted in Figure 2(b). Notice that there are local extrema at 𝑥 =
−2 ±

√
10

3
, between our rows.

This means that when knit or crocheted, our model will have slightly less accentuated peaks and valleys. As
we increase the value of 𝑠𝑐𝑎𝑙𝑒 in our program, we will work in more rows and this effect will be minimized.
As we decrease 𝑠𝑐𝑎𝑙𝑒, the problem worsens.

Automating Crochet Patterns for Surfaces of Revolution

197

Table 1: Calculations adjusting 𝑥-landmarks.

𝑖 (𝑐𝑅/4)
∫ 𝑚𝑖+1
𝑚𝑖

√︁
1 + (3𝑥2 + 4𝑥 − 2)2 𝑑𝑥 𝑥-Landmarks

0 8.434 𝑥0 = 𝑚0 = −3, 𝑥1 = −2.93, 𝑥2 = −2.84, 𝑥3 = −2.75, 𝑥4 = −2.65,

𝑥5 = −2.53, 𝑥6 = −2.38, 𝑥7 = −2.18, 𝑥8 = 𝑚1 = (−2 −
√

10)/3

1 5.923 𝑥0 = 𝑚1 = (−2 −
√

10)/3, 𝑥1 = −1.22, 𝑥2 = −0.92, 𝑥3 = −0.67,

𝑥4 = −0.41, 𝑥5 = −0.12, 𝑥6 = 𝑚2 = (−2 +
√

10)/3

2 1.805 𝑥0 = 𝑚2 = (−2 +
√

10)/3, 𝑥1 = 0.81, 𝑥2 = 𝑚3 = 1

Table 2: The number of stitches in each row of our pattern.

Row # Stitches Row # Stitches Row # Stitches
0 6 6 41 12 32
1 12 7 47 13 27
2 18 8 51 14 22
3 24 9 47 15 26
4 29 10 42 16 31
5 35 11 37

Prioritizing Local Extrema
Our method of using arclengths allows us to make slight adjustments to our 𝑥-values to accentuate the local
extrema of a shape. We do this by creating a list including the endpoints, 𝑎 and 𝑏, and all the 𝑥-values of
local extrema for your given function between 𝑎 and 𝑏: {𝑚0 = 𝑎, 𝑚1, . . . , 𝑚𝑛 = 𝑏}. Then between each 𝑚𝑖

and 𝑚𝑖+1, we find the 𝑥-values for where to place rows as in the previous section. The number of rows is
determined using the same calculation in Equation 1 with 𝑚𝑖 and 𝑚𝑖+1 as bounds.

Continuing with our example, we construct the list of extrema {𝑚0 = −3, 𝑚1 = −2−
√

10
3 , 𝑚2 = −2+

√
10

3 ,

𝑚3 = 1}. We then find 𝑥-landmarks between each 𝑚𝑖 value in Table 1.
Taken together, we get a new list of 𝑥-landmarks: −3,−2.93,−2.84,−2.75,−2.65,−2.53,−2.38,−2.18,

−2 −
√

10
3

,−1.22,−0.92,−0.67,−0.41,−0.12,
−2 +

√
10

3
, 0.81, 1. The result is displayed in Figure 2(c).

Calculating the Number of Stitches in Each Row
Once the 𝑥-landmarks have been determined for the placement of each row, it is a simple matter to calculate
how many stitches should be in each row. There are 𝑠(𝑖) = [2𝜋 · 𝑠𝑐𝑎𝑙𝑒 · 𝑆

4 𝑓 (𝑥𝑖)] stitches in the 𝑖-th row. In
our running example, the 2nd row has [2𝜋(0.18) · 22

4 𝑓 (−2.84)] = 18 stitches. The number of stitches in each
row of our example has been displayed in Table 2.

Writing the Pattern

While computing the number of stitches in each row of our pattern is a big part of pattern construction, there
are many additional considerations for how to output a polished set of instructions.

Martinez and Lipnicki

198

Increase and Decrease Placement
The most important problem to solve is how to distribute increases and decreases in an effective, yet practical
way. When increases or decreases are placed on top of each other in consecutive rows, the smoothness of the
finished shape can suffer. If we have the program output instructions that are burdensome to follow, that is
impractical as well. We will discuss each of these considerations and how we decided to balance the two.

Suppose we are considering Row 6 from above with 𝑠(6) = 41 stitches. Row 5 has 𝑠(5) = 35 stitches, so
Row 6 will need to include 6 increase stitches. Following are some options for how those could be distributed.
Note that we use the symbol * to block off a section of instructions that will be repeated a designated number
of times.

Option 1: Sc35, *Inc* (6 times)
Option 2: *Sc4, Inc* (6 times), Sc5
Option 3: *Sc4, Inc* (2 times), Sc1, *Sc4, Inc* (2 times), Sc2, *Sc4, Inc* (2 times), Sc1

The first set of instructions is the easiest to crochet, but by grouping all the increase stitches together, we
are creating a skew that will pull our finished surface to one side. Options 2 and 3 do a much better job of
spreading the increases or decreases along the row. Option 2 is computed with a simple division calculation
(which we will formalize below)—we call this the remainder method. For this option, we have spread out
the increases a fair amount, but tacked on additional “remainder” stitches at the end of the row.

Option 3 works to additionally split up that clump of non-increase stitches at the end of the row,
by distributing those as well. It is easily argued that something like Option 3 would be the best choice
theoretically; however, we must always keep in mind that a real person will be following these instructions
and complexity should be minimized. In our program, we opt for the remainder method in Option 2 not
because it is the most even distribution of the increases or decreases, but because it makes an attempt at even
distribution while maintaining the sanity of the crocheter. Our decision means there is the possibility for
a small amount of leaning in our shape, but this effect will depend on how large the remainders are for a
particular shape. From our experience, this effect is unnoticeable.

The other benefit to the remainder method is a easy way to minimize overlapping increases and decreases.
We can think of our row as a circle (even though we are actually crocheting a spiral) and perform a cyclic shift
of the positions of the increases or decreases. For instance, instead of “*Sc4, Inc* (6 times), Sc5,” we could
choose to make the row instructions “Sc3, *Sc4, Inc* (6 times), Sc2” or even “Sc2, Inc, *Sc4, Inc* (5 times),
Sc7”; notice in this last example, we pull from some of the single crochet stitches not in the remainder. To
figure out the optimal configuration of the stitches, we create a distance measure.

For each row, we can create a set of ratios that indicate where the increases and decreases fall. The
row “*Sc4, Inc* (6 times), Sc5” will have the associated set of ratios: {5/35, 10/35, 15/35, 20/35, 25/35,
30/35}. The denominator in these ratios is the number of instructions in a row (not the number of stitches).
For instance, “*Sc4, Inc* (6 times), Sc5” ends with 41 stitches and is working 35 stitches from the previous
row, but “*Sc4, Dec* (6 times), Sc5” ends with 35 stitches and is working 41 stitches from the previous row.
Both have the same set of ratios. So we use min(𝑠(𝑖 − 1), 𝑠(𝑖)) for the denominator of the ratios in row 𝑖.

Suppose 𝐷 gives some possible set of positions for the increases or decreases in the 𝑖-th row. Define 𝑟𝑖 as
the function that provides the corresponding set of ratios for row 𝑖: 𝑟𝑖 (𝐷) = {𝑥/min(𝑠(𝑖 − 1), 𝑠(𝑖)) | 𝑥 ∈ 𝐷}.
Note that 𝑟𝑖 only accepts sets with integer values between 0 and min(𝑠(𝑖 − 1), 𝑠(𝑖)), inclusive. Using these
ratios, we create two types of distance measures between two consecutive rows. If 𝐷 (resp. 𝐸) is some set of
increase/decrease positions in row 𝑖 − 1 (resp. 𝑖), then

𝑑1(𝑟𝑖−1(𝐷), 𝑟𝑖 (𝐸)) = min{min(|𝑦 − 𝑥 |, 1 − |𝑦 − 𝑥 |) | 𝑥 ∈ 𝑟𝑖−1(𝐷), 𝑦 ∈ 𝑟𝑖 (𝐸)}

Automating Crochet Patterns for Surfaces of Revolution

199

Table 3: An example of the distance calculations to determine the optimal placement of increases or
decreases in a row.

Instructions 𝑟6(𝐷′(6)) 𝑑1(𝑟5(𝐷 (5)), 𝑟6(𝐷′(6))) 𝑑2(𝑟5(𝐷 (5)), 𝑟6(𝐷′(6)))
Sc5, *Sc4, Inc* (6 times) {10/35, 15/35, 20/35, 25/35, 30/35, 35/35} 0.04433 0.05665

Sc4, *Sc4, Inc* (6 times), Sc1 {9/35, 14/35, 19/35, 24/35, 29/35, 34/35} 0.01576 0.02808
Sc3, *Sc4, Inc* (6 times), Sc2 {8/35, 13/35, 18/35, 23/35, 28/35, 33/35} 0.00197 0.00739
Sc2, *Sc4, Inc* (6 times), Sc3 {7/35, 12/35, 17/35, 22/35, 27/35, 32/35} 0.01675 0.02906
Sc1, *Sc4, Inc* (6 times), Sc4 {6/35, 11/35, 16/35, 21/35, 26/35, 31/35} 0.04532 0.05764

Sc4, Inc (6 times), Sc5 {5/35, 10/35, 15/35, 20/35, 25/35, 30/35} 0.04433 0.06158
Sc3, Inc, *Sc4, Inc* (5 times), Sc5 {4/35, 9/35, 14/35, 19/35, 24/35, 29/35} 0.01576 0.04253
Sc2, Inc, *Sc4, Inc* (5 times), Sc6 {3/35, 8/35, 13/35, 18/35, 23/35, 28/35} 0.00197 0.03120
Sc1, Inc, *Sc4, Inc* (5 times), Sc7 {2/35, 7/35, 12/35, 17/35, 22/35, 27/35} 0.02167 0.04729

Inc, *Sc4, Inc* (5 times), Sc8 {1/35, 6/35, 11/35, 16/35, 21/35, 26/35} 0.05025 0.06634

𝑑2(𝑟𝑖−1(𝐷), 𝑟𝑖 (𝐸)) =
1

|𝐷 | |𝐸 |
∑︁

𝑥∈𝑟𝑖−1 (𝐷) ,𝑦∈𝑟𝑖 (𝐸)
min(|𝑦 − 𝑥 |, 1 − |𝑦 − 𝑥 |)

The 𝑑1 measure tells you the smallest pairwise distance that occurs between the ratios of the two rows, while
the 𝑑2 measure calculates the average pairwise distance between these ratios. We write min(|𝑦−𝑥 |, 1− |𝑦−𝑥 |)
to find the distance between two particular ratios; this accounts for the fact that having one near the end of a
row and the other near the beginning is physically close, even though it is not numerically. Note that 𝑑1 is
not a metric because it fails the positivity condition, but we can show that 𝑑2 is one.

Our pattern creation program uses the following algorithm to find the optimal placement of increases
and decreases for any row 𝑖 where 𝑠(𝑖 − 1) ≠ 𝑠(𝑖). Define integers 𝑞 and 𝑟 such that 0 ≤ 𝑟 < |𝑠(𝑖) − 𝑠(𝑖 − 1) |
(our remainder) and min(𝑠(𝑖 − 1), 𝑠(𝑖)) = 𝑞 · |𝑠(𝑖) − 𝑠(𝑖 − 1) | + 𝑟. Note that |𝑠(𝑖) − 𝑠(𝑖 − 1) | gives the number
of increases or decreases needed in a row, while min(𝑠(𝑖 − 1), 𝑠(𝑖)) gives the number of instructions needed.
We then construct 𝐷 (𝑖), giving the positions of the increases or decreases in the 𝑖th row, as follows:

1. Set desired positions = {𝑞 · 𝑗 + 1 | 0 ≤ 𝑗 < |𝑠(𝑖) − 𝑠(𝑖 − 1) |} (note that this will group the 𝑟 remainder
stitches at the end of the row). Set prevdistance = 0 and prevmean = 0.

2. For 𝑘 where 1 ≤ 𝑘 ≤ 𝑞 + 𝑟:
(a) Set 𝐷′(𝑖) = {𝑞 · 𝑗 + 𝑘 | 0 ≤ 𝑗 < |𝑠(𝑖) − 𝑠(𝑖 − 1) |}, newdistance = 𝑑1(𝑟𝑖−1(𝐷 (𝑖 − 1)), 𝑟𝑖 (𝐷′(𝑖)))

and newmean = 𝑑2(𝑟𝑖−1(𝐷 (𝑖 − 1)), 𝑟𝑖 (𝐷′(𝑖)))
(b) If newdistance > prevdistance or (newdistance = prevdistance and newmean > prevmean), set

prevdistance = newdistance, prevmean = newmean, and desired positions = 𝐷′(𝑖)
3. Return desired positions

Our output from this process will be the positions of increases and decreases that maximizes the 𝑑1 distance.
In the case of a tie, we choose the option which has the largest 𝑑2 distance. This is especially important in
those situations where 𝑑1 is always 0 (meaning it is impossible to avoid an increase or decrease aligning with
one in the previous row); in these situations, we just try to get everything else as far apart as possible.

In our running example, the Row 5 instructions are “Sc6, Inc, *Sc3, Inc* (5 times), Sc2.” and
𝑟5(𝐷 (5)) = {7/29, 11/29, 15/29, 19/29, 23/29, 27/29}. Our program will then run through all the lines in
Table 3 to find the optimal placement of increases in Row 6. The largest 𝑑1 distance is produced with the last
set of instructions, so we choose those.

Roots at 𝑎 or 𝑏
We don’t use functions that have a root between 𝑎 and 𝑏, since this doesn’t make for a good physical model.
However, we can use functions that have roots at 𝑎 or 𝑏. Our program instructs the crocheter to either begin

Martinez and Lipnicki

200

or end a closed shape when appropriate. If there is a root at both 𝑎 and 𝑏, we further include instructions for
stuffing the shape with fiberfill—a mathematical plushie! You can decide to turn any of your shapes into a
plushie by crocheting a disk and using it to close an end (which we did for Figure 1(c)).

Output

Given 𝑓 (𝑥) = 𝑥3 + 2𝑥2 − 2𝑥 + 4, 𝑎 = −3. 𝑏 = 1, 𝑆 = 22, 𝑅 = 25, 𝑐 = 0.18, our program produces:

Row 0: Chain 6. join work, and Sc6.

Row 1: *Inc* (6 times). (12 stitches)

Row 2: Inc, *Sc1, Inc* (5 times), Sc1. (18 stitches)

Row 3: *Sc2, Inc* (6 times). (24 stitches)

Row 4: Sc1, Inc, *Sc3, Inc* (4 times), Sc6. (29 stitches)

Row 5: Sc6, Inc, *Sc3, Inc* (5 times), Sc2. (35 stitches)

Row 6: Inc, *Sc4, Inc* (5 times), Sc9. (41 stitches)

Row 7: Sc3, Inc, *Sc5, Inc* (5 times), Sc7. (47 stitches)

Row 8: Sc12, Inc, *Sc10, Inc* (3 times), Sc1. (51 stitches)

Row 9: Sc6, Dec, *Sc10, Dec* (3 times), Sc7. (47 stitches)

Row 10: Sc4, Dec, *Sc7, Dec* (4 times), Sc5. (42 stitches)

Row 11: Dec, *Sc6, Dec* (4 times), Sc8. (37 stitches)

Row 12: Sc3, Dec, *Sc5, Dec* (4 times), Sc4. (32 stitches)

Row 13: Dec, *Sc4, Dec* (4 times), Sc6. (27 stitches)

Row 14: Sc2, Dec, *Sc3, Dec* (4 times), Sc3. (22 stitches)

Row 15: Sc6, Inc, *Sc4, Inc* (3 times). (26 stitches)

Row 16: Sc1, Inc, *Sc4, Inc* (4 times), Sc4. (31 stitches)

Tie off

The result of following these instructions is in Figure 3. Note that we have crocheted a relatively small shape
here; the larger the shape, the closer it will look to the idealized picture. Figure 1 has examples with larger
𝑠𝑐𝑎𝑙𝑒 values (Figure 1(c) is the largest shape in real life).

(a) (b) (c) (d)

Figure 3: Figures (a) and (c) show different views of our crocheted model, using the instructions produced
by our program, while (b) and (d) show our surface of revolution as pictured by CoCalc.

Program Limitations

The decisions we made in the construction of our pattern program does lead to limitations. Ultimately, it is
fairly easy to choose a set of inputs that will not lead to a good pattern. We have tried to mitigate this issue

Automating Crochet Patterns for Surfaces of Revolution

201

by having the program provide feedback when inputs need to be adjusted.
It should be clear that crocheting impossibly complicated functions (such as sin(1/𝑥) anywhere near

𝑥 = 0) will not work. The user should use common sense in deciding what model is reasonable to make.
Besides this, there are some situations that will cause errors in the program.

Steep Increases or Decreases
On occasion, there will be a change in stitch count from row to row that either more than doubles or more
the halves the number of stitches, meaning using only Inc/Dec is not enough. Our program will recognize
this problem and make a note of it at the top of the pattern. Most of the time, this occurs when the function
gets close to the 𝑥-axis. There are a couple ways to change your inputs to avoid this issue:

• Add a positive constant to your chosen function. There is always a constant that will solve the problem,
since adding such a constant will increase the number of stitches to work with, but will not change the
difference in stitches between rows.

• Sometimes a change to 𝑠𝑐𝑎𝑙𝑒 or multiplying your function by a constant can help. In situations where
the problem is small, a small tweak can change the rounding enough for the problem to disappear.

Approximation
To create a program that works for more functions, we used “guess and check” to solve some equations to
an accuracy of 0.01. In many cases, this works quite well. However, using functions with features that are
closer together that 0.01 will not be noticed by our program.

When functions have a very rapid increase, there may be two 𝑥-landmarks that are exactly the same to
two decimal places, or end up looking unevenly spaced because of the rounding. Since we always measure
our arclength from the beginning of the shape, this kind of problem gets corrected and we rely on the forgiving
nature of crochet to make a quality shape.

What More?

There are so many mathematical objects that can be crocheted. What other classes of mathematical objects
might be amenable to computer generation? Our program is capable of producing a pattern for every quadric
surface, besides the hyperbolic paraboloid. While we have devised a pattern for this surface [3], we ask: is
there a way to automate pattern creation for surfaces that don’t have circular cross-sections?

At a number of crossroads in the coding of this program, we made subjective decisions on how to
proceed. Our aim has been to make a program that is broadly applicable, reasonably fast, and produces
a pattern that would be enjoyable to crochet. We invite interested parties to make changes as they see fit
to highlight the considerations they most care about. And of course, we invite crocheters to share their
mathematical creations that arise from this program!

References

[1] M. Martinez, A. Taylor Lipnicki. Crocheting Surfaces of Revolution, 2023.
https://github.com/meganmartinez/math crochet,
https://cocalc.com/github/meganmartinez/math crochet

[2] A. Szczepański. “Knit Knit Revolution.” In Crafting by Concepts, edited by S. Belcastro and C.
Yackel, AK Peters, 2011.

[3] A. Taylor Lipnicki. Little Quadric Lights, 2022. Wool yarn, copper wire, and string lights. Bridges
2022, Aalto. http://gallery.bridgesmathart.org/exhibitions/2022-bridges-conference/lady asphodel

Martinez and Lipnicki

202

https://github.com/meganmartinez/math_crochet
https://cocalc.com/github/meganmartinez/math_crochet
http://gallery.bridgesmathart.org/exhibitions/2022-bridges-conference/lady_asphodel

