Supplement 1

Suppose an object has a group of symmetries G of size k, and there are m locations on the object which are permuted by the symmetries. The cycle index of such an object is [10, Sec. 6.8]

$$
Z_{G}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\frac{1}{k} \sum_{g \text { in } G} x_{1}^{c_{1}(g)} x_{2}^{c_{2}(g)} \ldots x_{m}^{c_{m}(g)}
$$

where $c_{i}(g)$ is the number of cycles of the symmetry g which have size i.
For an object with m locations and only m-fold rotational symmetry, the cycle index is [5]

$$
C_{m}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m} \sum_{d \text { divides } m} \phi(d) x_{d}^{m / d},
$$

where $\phi(d)$ is the Euler totient function which counts the number of integers between 1 and d relatively prime to d. For instance, if $m=16$,

$$
C_{16}\left(x_{1}, \ldots, x_{16}\right)=\frac{1}{16}\left(x_{1}^{16}+x_{2}^{8}+2 x_{4}^{4}+4 x_{8}^{2}+8 x_{16}\right)
$$

corresponding to:

- the identity, which has 16 cycles each of size 1 (the outer ring in Figure 4),
- rotation by 180°, which has 8 cycles each of size 2 (the second-largest ring in Figure 4),
- rotations by 90° and 270°, which each have 4 cycles each of size 4 (ring 3 in Figure 4),
- rotations by $45^{\circ}, 135^{\circ}, 225^{\circ}$, and 315°, which each have 2 cycles each of size 8 (ring 4 in Figure 4), and
- the 8 rotations of multiples of 22.5° not yet listed, which each have a single cycle of size 16 (the inner ring in Figure 4).

For an object with m locations and m-fold dihedral symmetry, where m is an even number, the cycle index is [5]

$$
D_{m}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{2 m}\left(\sum_{d \text { divides } m} \phi(d) x_{d}^{m / d}+\frac{m}{2} x_{2}^{m / 2}+\frac{m}{2} x_{1}^{2} x_{2}^{m / 2-1}\right)
$$

For example, if $m=16$, as in the 16 -strand Kongō Gumi braid,

$$
D_{16}=\frac{1}{32}\left(x_{1}^{16}+x_{2}^{8}+2 x_{4}^{4}+4 x_{8}^{2}+8 x_{16}+8 x_{2}^{8}+8 x_{1}^{2} x_{2}^{7}\right) .
$$

This corresponds to the 16 rotations listed above, plus:

- 8 reflections passing between the colored locations, each of which has 8 cycles each of size 2 (the 8 rings of Figure 5), and
- 8 reflections passing through two colored locations, each of which has 7 cycles of size 2 and 2 cycles of size 1 (the 8 rings of Figure 6).

We also need the cycle index for the ways to permute q colors, which is [5]

$$
S_{q}\left(x_{1}, \ldots, x_{q}\right)=\frac{1}{q!} \sum_{d_{1}+2 d_{2}+\cdots+q d_{q}=q} \frac{q!}{d_{1}!\ldots d_{q}!} x_{1}^{d_{1}}\left(\frac{x_{2}}{2}\right)^{d_{2}} \ldots\left(\frac{x_{q}}{q}\right)^{d_{q}} .
$$

Figure 4: Cycles corresponding to rotations of a 16-strand braid around its axis. Each ring represents a set of symmetries that share a set of cycles. Each color within the ring represents a cycle for that set of symmetries. (The colors of each ring are not related to the colors of other rings.) The numbers indicate the number of symmetries with that cycle.

Figure 5: Cycles corresponding to reflections of the braid passing between colored locations. Each ring represents a single symmetry and its set of cycles; each color represents a cycle.

Figure 6: Cycles corresponding to reflections of the braid passing through two colored locations (the black and white dots). Each ring represents a single symmetry and its set of cycles; each color represents a cycle.

For example, with $q=2$ colors we have

$$
S_{2}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}\right)
$$

and with $q=4$ colors we have

$$
S_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{24}\left(x_{1}^{4}+6 x_{1}^{2} x_{2}+8 x_{1} x_{3}+3 x_{2}^{2}+6 x_{4}\right) .
$$

A simplified form of de Bruijn's Theorem now says:
Theorem (de Bruijn [5]). If an object has m locations which can each be colored with one of q different colors, and a group G of symmetries with cycle index $H_{m}\left(x_{1}, \ldots, x_{m}\right)$, then the number of non-equivalent ways to color the object is

$$
H_{m}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right) S_{q}\left(e^{1\left(z_{1}+z_{2}+\ldots\right)}, e^{2\left(z_{2}+z_{4}+\ldots\right)}, \ldots, e^{q\left(z_{q}+z_{2 q}+\ldots\right)}\right)
$$

evaluated at $z_{1}=z_{2}=\cdots=z_{m}=0$.
For example,

$$
\begin{gathered}
D_{16}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{16}}\right) S_{2}\left(e^{1\left(z_{1}+z_{2}+\ldots\right)}, e^{2\left(z_{2}+z_{4}+\ldots\right)}\right) \\
=\frac{1}{32} \frac{\partial^{16}}{\partial z_{1}{ }^{16}} S_{2}+\frac{1}{4} \frac{\partial^{9}}{\partial z_{2}{ }^{7} \partial z_{1}{ }^{2}} S_{2}+\frac{9}{32} \frac{\partial^{8}}{\partial z_{2}{ }^{8}} S_{2}+\frac{1}{16} \frac{\partial^{4}}{\partial z_{4}{ }^{4}} S_{2}+\frac{1}{8} \frac{\partial^{2}}{\partial z_{8}^{2}} S_{2}+\frac{1}{4} \frac{\partial}{\partial z_{16}} S_{2} \\
=1125\left(e^{z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}+z_{7}+z_{8}+z_{9}+z_{10}+z_{11}+z_{12}+z_{13}+z_{14}+z_{15}+z_{16}}\right)^{2} \\
+37 e^{2 z_{2}+2 z_{4}+2 z_{6}+2 z_{8}+2 z_{10}+2 z_{12}+2 z_{14}+2 z_{16}+2 z_{18}+2 z_{20}+2 z_{22}+2 z_{24}+2 z_{26}+2 z_{28}+2 z_{30}+2 z_{32}}
\end{gathered}
$$

which evaluated at $z_{1}=z_{2}=\cdots=z_{16}=0$ gives 1162 .
The more complete version of de Bruijn's Theorem says:
Theorem (de Bruijn [4, Special case of Thm. 1]). If an object has m locations which can each be colored with one of q different colors, and a group G of symmetries with cycle index $H_{m}\left(x_{1}, \ldots, x_{m}\right)$, then the number of non-equivalent ways to color the object with the first color in m_{1} locations, the second color in m_{2} locations, and so on, is the coefficient of $w_{1}^{m_{1}} w_{2}^{m_{2}} \ldots$ in

$$
H_{m}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right) S_{q}\left(\eta_{1}, \ldots \eta_{q}\right)
$$

where η_{k} is the power series expansion in x of

$$
e^{k\left(z_{k} x+z_{2 k} x^{2}+\ldots\right)}
$$

with x^{j} replaced by w_{j}^{t} for each j, evaluated at $z_{1}=z_{2}=\cdots=z_{m}=0$.
For example,

$$
\begin{gathered}
\left.D_{16}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{16}}\right) S_{4}\left(\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right)\right) \\
=\frac{1}{32} \frac{\partial^{16}}{\partial z_{1}{ }^{16}} S_{4}+\frac{1}{4} \frac{\partial^{9}}{\partial z_{2}{ }^{7} \partial z_{1}^{2}} S_{4}+\frac{9}{32} \frac{\partial^{8}}{\partial z_{2}{ }^{8}} S_{4}+\frac{1}{16} \frac{\partial^{4}}{\partial z_{4}{ }^{4}} S_{2}+\frac{1}{8} \frac{\partial^{2}}{\partial z_{8}^{2}} S_{4}+\frac{1}{4} \frac{\partial}{\partial z_{16}} S_{4}
\end{gathered}
$$

evaluated at $z_{1}=z_{2}=\cdots=z_{16}=0$ gives

$$
=83488 w_{4}^{4}+788865 w_{3} w_{4}^{2} w_{5}+316701 w_{3}^{2} w_{5}^{2}+474138 w_{2} w_{4} w_{5}^{2}+\cdots
$$

from which coefficients come the values in Supplement 3.

Supplement 2

The follow diagrams show the braids missing from Rosalie Neilson's book [8]. (All pictures generated by the author using Friendship-Bracelets.net.)

Figure 7: (a) The missing 4-spot braid: 1.2//6.14/ in Neilson's notation. (b) The first missing 8 -spot braid: 1.2.9/3.12/6/7.15 in Neilson's notation.

Figure 8: (a) The second missing 8 -spot braid: 1.2.9/3/6.13.14/15 in Neilson's notation.
(b) The third missing 8 -spot braid: 1.2.9/4/6.13.14/16 in Neilson's notation.

Supplement 3

The following table gives the number of non-equivalent 16 -strand Kongō Gumi patterns with exactly four different colors, classified by the distribution of strands.

Number of strands of each color				Number of patterns
Color A	B	C	D	
4	4	4	4	83488
3	4	4	5	788865
3	3	5	5	316701
2	4	5	5	474138
1	5	5	5	63231
3	3	4	6	526610
2	4	4	6	395500
2	3	5	6	630840
1	4	5	6	315420
2	2	6	6	80053
1	3	6	6	105252
3	3	3	7	100380
2	3	4	7	450660
1	4	4	7	112805
2	2	5	7	135450
1	3	5	7	180180
1	2	6	7	90160
1	1	7	7	6630
2	3	3	8	113155
2	2	4	8	85077
1	3	4	8	112665
1	2	5	8	67620
1	1	6	8	11410
2	2	3	9	37695
1	3	3	9	25095
1	2	4	9	37590
1	1	5	9	7560
2	2	2	10	3941
1	2	3	10	15036
1	1	4	10	3843
1	2	2	11	2079
1	1	3	11	1386
1	1	2	12	371
1	1	1	13	21

The next table gives the number of non-equivalent 16 -strand Kongō Gumi patterns with exactly three different colors, classified by the distribution of strands.

\left.| Number of strands of each color Number of patterns
 Color A
 B | | | C |
| :---: | :---: | :---: | ---: |$\right)$

The values for two colors and one color are given in Table 1 of the paper.

