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Abstract

Methods for creating wooden polyhedra are discussed, leading the constructor and the viewer to think
about 0, 1, 2, and 3-dimensional geometric components. The field has a long history in math, fine art,
and education and carries symbolic importance for its tangible merger of beauty with structure and
rationality.

Introduction

Wooden polyhedra can be beautiful objects: tactile, organic, naturally colored, and crisply faceted, with a
lovely grained texture. They are solid, robust, and substantial compared to paper or cardboard models and
show the craftsmanship of their individual creation. Holding them in the hand and turning them to see all
sides can be a sensuous, artistic experience. The “viewer” is in fact a multisensory “experiencer,” enjoying
the texture, the weight, and the smell of the wood in addition to the visual appearance. They may serve as
mathematical or artistic models of well known shapes already existing in the geometry literature, or they
may be sculptures based on original forms that are created for aesthetic purposes. This paper surveys a
variety of examples and construction methods and suggests that making wooden polyhedra has significant
pedagogical value as a laboratory exercise in teaching mathematics. Included in the supplement [9] is a
discussion of methods for students to produce wooden polyhedra in a school setting.

    Well crafted polyhedra models that are presented with just the right amount of technical explanation can
engage the viewer and lead them to further investigate the underlying mathematical ideas. Some museum
collections contain wood polyhedra that historically were created for pedagogical purposes. An active
current practice among hobbist woodworkers is to construct Platonic solids such as the dodecahedron and
icosahedron as a demonstration of technical mastery [23]. In addition, in the fine arts world one finds
interesting examples of significant sculpture that in physical terms are simply wooden polyhedra.

     The study of polyhedra develops spatial reasoning and imagination while providing foundations for 3D
design.  By creating one's own polyhedra, one comes to grips with their  essential character.  Technical
details arise of edge lengths, polygon angles, dihedral angles, structural regularities, transformations, etc.
Many references recommend methods for students to learn geometric concepts and mathematical thinking
via polyhedra, typically with paper (e.g., modular origami), cardboard (e.g., cut and glued models), or
plastic construction sets (e.g., Polydron for face models or Zometool for models emphasizing vertices and
edges). Making wooden models is easily within the skill set of typical hobbyist woodworkers. 

Figure 1: Polyhedra made with a wood panel for each face: (a) a 92-faced symmetrohedron, (b) the
Minkowski sum of five tetrahedra, which has 80 faces, and (c)“jtD” in Conway notation, with 90 faces.
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Some Examples
Despite its long history, the term “polyhedron” is notorious for being vaguely and inconsistently defined.
Depending on one's field of mathematics, polyhedra may be embedded 3D volumes, or merely their 2D
surfaces (as a “torus” is the  surface of a donut, not its volume), or something more abstract involving
essential incidence relations of primitive elements. Definitions differ on conditions such as convexity,
connectedness, finiteness, and self-intersection. We will ignore these fine points and assume an intuitive
sense of the vernacular usage. This presentation is organized around how models emphasize the 0, 1, 2, or
3-dimensional elements of a polyhedron, i.e., the vertices, edges, faces, or solid content:

Face Models.  Figure 1 shows three examples of face models, constructed with a separate piece of wood
for each face to emphasize the 2D planar elements. Figure 1a shows a 92-sided symmetrohedron [15],
notable because it features twenty regular enneagons (a.k.a. nonagons), a polygon that is relatively scarce
in the geometry literature. It  is assembled from polygonal  panels of  maple, bubinga,  and purpleheart.
Figure 1b shows the Minkowski sum of five regular tetrahedra [24]. Its faces are 20 equilateral triangles of
black walnut and 60 rhombi of sapele. While the uniform compound of five regular tetrahedra is a very
familiar structure and the Minkowski sum is a well studied operation, this wooden model is unique in
combining these ideas.  Figure  1c is  a  lovely 90-sided form with no particular  name.  It  is  a  type  of
enneacontahedron succinctly called “jtD” in Conway's polyhedron notation. The 30 rhombi are maple and
the sixty kites are bubinga. I constructed these three models around 2002 from quarter-inch thick panels
by a method detailed below. Each is approximately 11 inches in diameter. 

Volume Models.  Moving up a dimension from surfaces to volumes, Figure 2 shows three 3-inch models
emphasizing the 3D body of polyhedra. Each is cut from a cube of solid basswood.  Figure 2a is a rhombic
triacontahedron (the  Catalan  solid  bounded by thirty golden  rhombi).  Figure  2b  is  a  snub cube  (the
Archimedean solid with one square and four equilateral triangles at each of its 24 vertices.) Figure 2c is a
“Sharpohedron,” (described and cut  as a solid wood model  by Abraham Sharp around 1700).  It  is  a
circumscribed form of what is called “jtT” in Conway notation.  I cut these using a custom miter-box
method [10], suitable in each case because six of the faces are remnants of the starting cube's faces, so at
each step, uncut portions of the original faces orient the partially cut block within the miter box.

Figure 2: Solid wood polyhedron models: (a) rhombic triacontahedron, (b) snub cube, (c) Sharpohedron.

Edge Models.  Edge models emphasize 1-dimensional components. Perhaps the most famous examples
are the “skeletal” polyhedra in Luca Pacioli's 1509 book  Divina Proportione  [19]. Figure 3a shows an
elevated icosidodecahedron from one of the surviving manuscript copies of the book (hand-written in
1498).  Pacioli  worked with Leonardo da Vinci  for  several  years  and credits  him for  the  perspective
polyhedra illustrations, but it is controversial whether any of the surviving images were hand-drawn by
Leonardo or just copies by others of lost originals. (And there is no evidence about whether Leonardo was
involved in constructing the wooden models on which the drawings are based.) Figure 3b shows my 16-
inch diameter speculative reconstruction of what could have been the model for the drawing. The 120
equilateral triangles are each assembled from three mitered pieces of cherry wood, so 360 pieces had to be
cut and assembled with precision joinery.   The model in Figure 3b was displayed along with a 1509
printed edition of  the  book at  the  Oxford University Bodleian Library exhibition “Thinking 3D” [6].
Figure 4 shows another Pacioli example, discussed below.
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Figure 3:  Drawing of elevated icosidodecahedron
from Pacioli and my speculative reconstruction.

Figure 4:  Drawing of a truncated icosahedron from
Pacioli and six-foot outdoor sculpture by Gary Moresky.

Vertex  Models.  Vertex-focused  models  emphasize  the  0-dimensional  vertices  of  a  polyhedron.  For
example, one can glue eight wooden spheres into a cubical structure. Or the natural way to hold four
wooden  bocce  balls  in  one  hand  is  to  position  them as  the  vertices  of  a  regular  tetrahedron.  More
interesting structures can be made by stringing wooden beads into a polyhedral form or by using other
shapes than spheres for the units. Typical ball-and-stick chemistry models (e.g., cubane) can be seen as
combined vertex and edge models. If the sticks are shortened to zero length, the balls abut to emphasize an
arrangement of points in space. I have no interesting vertex models to present here, so I leave illustrations
to the reader's imagination, but as a conceptual artwork, I'll suggest visualizing 27 wood cubes glued into
a larger 3×3×3 cube, then seeing it as simultaneously a vertex, edge, face, and solid model.

A Sampling of Polyhedra in Fine Art
Pacioli traveled with wooden polyhedra models, using them didactically when he lectured. In the late
1400s, a set was purchased by the city of Florence for public display [20]. Although Pacioli associated
with Leonardo da Vinci, his book was intended to teach math and was not directed to an art audience. A
separate tradition of literature on art and perspective, also emphasizing polyhedral examples, was written
for  artists.  Well  known treatises  on  perspective  by Piero  della  Francesca,  Daniele  Barbaro,  Lorenzo
Sirigatti,  Jean  Cousin,  Jean-Francois  Niceron,  Albrecht  Durer,  Lorenz  Stoer,  Hans  Lencker,  Wentzel
Jamnitzer and others each give a position of honor to interesting polyhedra [16, 22]. Precise geometric
forms are powerful  examples  to show off  one's  mastery,  as they require a clear understanding of the
relationship between 3D objects and 2D projections. These works make clear that in a professional artist's
practice, polyhedra are worthy objects of study, possessing a crisp beauty in their structural regularity. 

Figure 5:  Monumental polyhedral fantasies from Ozanam, Mallet, Taylor, and Malton.
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    Figure 5 shows one plate each from Jacques Ozanam's 1693 La Perspective Theorique Et Pratique,
Alain Manesson Mallet's  1702  La Géométrie  Pratique,  Brook Taylor's  1715  Linear Perspective,  and
Thomas  Malton's  1775  A Compleat  Treatise  on Perspective,  in  Theory and Practice.  What  are  those
enigmatic giant polyhedra supposed to be? What materials would they be made of? How are humans
expected to interact with them? Their large scale,  relative to the architecture and formal landscaping,
shows  that  the  authors  shared  an  aesthetic  that  gives  conceptual  importance  to  polyhedra  in  artistic
thought.  These  monuments  of  the  imagination  appear  to  represent  how essential  values  of  structure,
harmony, simplicity, and order connect mathematics with art. A similar conception appears to continue in
much modern sculpture and a good many contemporary works are little more than polyhedral models.

   I have seen many wooden reconstructions of Pacioli's famous models, sometimes in museum exhibitions
celebrating Leonardo. (I am often surprised when the reconstructor's edge proportions in this context differ
significantly  from  Leonardo's  drawings.)  In  the  mid-1990's  I  made  a  16-inch  diameter  truncated
icosahedron from cherry based on Figure  4a and proposed creating a  complete  set  for  an exhibition
celebrating the book's 500th anniversary in 2009, but an appropriate venue never presented itself. I was,
however, very pleased to see in 2003 a monumental construction by Gary Moresky, shown in Figure 4b.
This impressive backyard sculpture is made from 2×2 cedar beams, cut, glued, and screwed together. It
certainly embodies the monumental aspirations of the fantasies seen in Figure 5.

     A few years later in 2006, Ai Weiwei hired craftsmen to construct for him a similar (9-foot diameter)
truncated icosahedron edge model  from huanghuali  wood using traditional  Japanese joinery.  With Ai
Weiwei's international fame as a sculptor and activist, it sold for almost a quarter million dollars and now
can be seen at the Los Angeles County Museum of Art [1]. Interestingly, Weiwei reports he was not aware
of the Leonardo/Pacioli drawings, but instead instructed his workmen to scale up a plastic cat-toy that was
shaped like a truncated icosahedron. Close examination shows the beams lap on the interior in a manner
distinct from the simple butt joint of all the other truncated icosahedron edge models I have seen. 

    The twentieth century sculptor Tony Smith is famous for a series of sculptures, Moondog, Smoke, Smog,
and Smug, which are each large-scale assemblages of tetrahedra and octahedra. The tetrahedra are regular
but the octahedra are stretched along a 3-fold axis. The units join on triangular faces to effectively make a
faceted model of the diamond crystal lattice (with a tetrahedron at each carbon location and octahedra as
connectors). Smith began by making large plywood models (painted black) on his lawn in Newark, NJ
before having them fabricated in metal. The resulting forms have a surprising effect of appearing to tilt in
different directions depending on one's viewpoint; it is amazing how this emerges from simple polyhedra.

    The 20th century minimalists Sol Lewitt and Donald Judd each made many sculptural explorations
based on cubes. Theirs are materialized, dissected, deconstructed, and agglomerated into larger structures
in various ways, so there is much more to their intentions than just the cubic form. As Lewitt noted: “The
most interesting characteristic of the cube is that it is relatively uninteresting. It is best used as a basic unit
for any more elaborate function, the grammatical device from which the work may proceed.” Yet on a
literal plane, apart from the conceptual ideas, many of these pieces are simply large wooden cubes.

     Frank Stella's recent  Stars series explores various riffs on the small stellated dodecahedron. Many
involve formed materials with curved edges and surface elements, thereby distancing them from the strict
geometry of the underlying polyhedron. But others with straight edges or planar faces are fundamentally
large scale (5 to 12 foot diameter) wooden edge or face models of the small stellated dodecahedron.

    In exploring the works of Olafur Eliasson, one encounters an enormous number of models and artworks
inspired by polyhedral forms [4]. For example, his “The Missing Part Found” features a carefully mitered
pear-wood edge model of a deltoidal icositetrahedron along with a thin metal-rod edge model of its dual
rhombi-cuboctahedron,  while  “The  Missing  Part  Reminded”  similarly  features  a  pear-wood  tetrakis
hexahedron edge model along with a thin metal-rod edge model of its dual truncated octahedron.

   Let me conclude this polyhedral sampling with the work of the Japanese mathematician Tamekichi
Hishida (1863-1943). I have learned little about his life except that he taught at the Tokyo Physics School
and was also a tutor of Emperor Taisho. (He apparently came from an artistic family and was brother to
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the painter Hishida Shunsō.) I list him here with fine artists because he constructed the most astounding
solid wood polyhedra I have ever seen. A collection of 47 models currently on display at the Museum of
Modern Science of the  Tokyo University of Science includes many nonconvex examples, such as the
Kepler-Poinsot  polyhedra,  compounds  of  each  Archimedean  solid  with  its  dual  Catalan  solid,  and
compounds of mirror-image enantiomorphs, among others [13]. Figure 6a shows the compound of the
snub dodecahedron with its dual, the pentagonal hexecontahedron. This is the most difficult and intricate
dual pair among the Archimedean/Catalan solids and it is a joy to see it so superbly executed. To hand-cut
this chiral form so precisely from a solid block of wood requires not just astounding craftsmanship, but
also  the  vision  and  motivation  of  an  artist.  Figure  6b  shows  an  equally magnificent  carving  of  the
compound  of  the  pentagonal  hexecontahedron with  its  mirror  image.  I  have  never  before  in  all  my
polyhedral explorations seen a physical model of this difficult compound. Figure 6c shows another unique
example. It has no standard name but is formed of 60 kites and 90 rhombi and is called “jsD” in Conway
notation.  This  is  the  convex hull  of  the  compound shown in Figure  6a,  so I  assume it  illustrates  an
intermediate stage in its carving process.

   Hishida apparently hand-cut his models with a saw then carved the concave regions with a knife. Crisp
lines are drawn to highlight the edges. He also made pedagogical models, showing the guide lines and
initial cuts when starting from a cube to make a dodecahedron, icosahedron, or rhombic triacontahedron.
They indicate he used a method akin to Abraham Sharp's 1717 methods [10], but Hishida went on to non-
convex models, while Sharp limited himself to convex examples. I do not know whether Hishida's method
derived from Sharp's book about making solid models or if he developed his ideas independently. 

Figure 6: Three hand-carved solid polyhedra models by Tamekichi Hishida.

Construction Methods for Face Models
Studying polyhedra provides a gateway into an elegant world of mathematical beauty [3]. Constructing
wooden polyhedra not only connects us with long cultural traditions in mathematics and the arts, but also
immerses us in a world of precise geometric thinking. There isn't space here to give detailed instructions,
but the following outline of methods explains the broad principles for general readers and should allow
any experienced woodworker to fill in the production details.

    Face models are easiest to begin with. First choose a model and determine its face shape and dihedral
angles. If available, a laser cutter can cut accurate polygons, but the wood thickness is limited by the laser
power. With a band saw or scroll saw one can quickly cut polygons of any shape and thickness, but the
edges will  not be precisely straight. In contrast,  table saws and radial arm saws produce very straight
edges, but have safety concerns. The solution I prefer (when not laser cutting) is to first cut roughly with a
band saw, then use a disc sander (which is safer than any saw) to bevel and straighten the edges. First
make an accurate face template (for each type of face), e.g., a regular pentagon of the desired edge length
for a regular dodecahedron. Purists can make face templates by ruler and compass construction, but it is
easier to use a drawing program and print on to card stock. For a longer-lasting template, laser cutting a
thin  piece  of  plywood  or  acrylic  is  excellent.  Trace  the  template  (using  pencil)  on  to  the  wood  an
appropriate number of times and cut just outside the lines. Use a disc sander to sand exactly up to the line,
tilting the table for half the desired dihedral angle. Test fit, brush glue on the sanded mating surfaces, and
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assemble the faces using masking tape to keep them in position while the glue dries. For large models,
improvise some internal supports for added strength. When dry, remove the tape, clean up any errant glue,
sand the surface as desired, and apply finish. The examples in Figure 1 were made by this method.

    A good starting project is the regular dodecahedron. Its dihedral angle is 116.5 degrees, so each edge is
beveled for half of that. Table gauges are set to read 0 when sanding 90 degrees to the wood surface, so
the table tilt should be set to the complement of half the dihedral, i.e., 31.75 degrees. I have worked with
high school shop teachers, teaching students how to make regular dodecahedra from plywood and found it
succeeds as a very satisfying hands-on activity that ties nicely to the math curriculum. Many polyhedra
can  be  made  in  this  way,  but  it  may come  as  a  surprise  that  the  simplest  polyhedron—the  regular
tetrahedron—is the hardest. With a dihedral angle of 70.5 degrees, its edges are so sharp that the sander's
table would need to be tilted beyond 45 degrees, which is not possible with common shop equipment.

    The method can be adapted for non-convex polyhedra and compounds. For some impressive examples
of large-scale non-convex polyhedra rendered as face models in painted wood, see Dale Seymour's garden
size compound of five tetrahedra and his compound of five cubes, each over 4 feet in diameter [21]. (At
that scale, a saw is more appropriate than sanding for making the bevels.)

Figure 7:  Dual pairs: (a) cube and octahedron; (b) dodecahedron and icosahedron; (c) two tetrahedra.

   Figure 7 shows three non-convex models, about 6 inches in diameter, illustrating the Platonic solids in
dual relationships. I made each of these models in two stages, first making a face model from maple as
described above, then suggesting the interpenetrating dual polyhedron by adding a small pyramid of black
walnut to each face. These are photos from when the models were 25 years old, after being passed around
many  classrooms  and  lecture  halls,  indicating  how  hardwood  can  be  a  very  robust  material  for
pedagogical models.

A Construction Method for Edge Models
I  don't  recommend  edge  models  (Figures  3b  and  4b)  for  beginners
because of the precise joinery required to securely mate the struts on
their short bevelled ends. Instead, my 2003 sculpture Mother and Child
(Figure  8) illustrates  an  easier  technique  if  one  has  access  to  a  laser
cutter.  This ten-inch sculpture consists of two independent orbs, made
from  quarter-inch  thick  aspen.  The  inner  one  is  a  (2,1)-Goldberg
polyhedron [8]  face model.  A laser-cutter  was used to produce its  12
regular pentagons and 60 irregular hexagons. The outer orb is an edge
model of a (3,1)-Goldberg polyhedron. Its 132 faces were each cut as a
single hollow piece.  There are twelve small pentagons and sixty each of
two shapes of slightly irregular hexagons. A laser cutter can easily pierce
an opening in a panel (unlike, say, a band saw), making this method easy
for hollow faces. When sanding the bevels, I stopped just before the laser-cut edge, to leave a dark margin
to highlight the edges. Each hollow face is a single unit, so this style can be seen as a blend of edge and
face model; choosing the size of the openings can emphasize one interpretation or the other.

Figure 8:  “Mother and Child,”
edge model and face model.
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Figure 9:  Solids: (a) Platonic and Archimedean, (b) great rhombicosidodecahedron, (c) snub dodecahedron 

Construction Methods for Solid Models
Solid models require mastery of 3D geometry. A truncated X polyhedron can literally be made by sawing
off corners from an  X, but setting up a process to produce the proper angles and depths for the cuts
requires mathematical care. Starting from a raw block of material, e.g., a cube, a series of steps must be
made in which the slicing plane is accurately positioned relative to the surfaces of the partially cut block.

    Mathematical models for education were produced in Germany in the nineteenth century and many
survive in historical collections, including solid wood polyhedra, e.g., three Kepler-Poinsot polyhedra are
on display at the University of Groeningen [7], but I have not found how they were produced. Three of
Sharp's  solid  wood  polyhedra  from  1717  survive  and  are  on  museum  display  in  Bradford:  a
rhombicuboctahedron, an icosidodecahedron, and a snub cube. His methods are well documented [10].

    In the cabinet making and architectural woodworking traditions, there is a long history of making solid
wood polyhedra to serve decoratively as finials, newel post tops, and similar ornaments. A comprehensive
reference is by Holtzapffel, who in 1856 described the jigs, angles, and sequences of cuts to produce a
wide variety of geometric solids with a table saw. He viewed it as a recreational activity and concluded: “a
vast number of even the most complex models of geometrical and crystallographical solids, with plane
surfaces, may be produced with comparative facility and great exactness, by the saw machine; and the
mechanical amateur will find it a somewhat fascinating study” [14]. But like other texts I have seen in this
cabinet-making literature, the naive methods he presented for cutting the dodecahedron and icosahedron
center on a 5-fold axis and so miss the elegant method already detailed in 1717 by Abraham Sharp [10].

   Euclid famously constructed the regular dodecahedron by adding six “roofs” to a cube. His method
insightfully aligns three of the 2-fold axes of a dodecahedron with the three 4-fold axes of a cube. This
amounts to centering six of the dodecahedron's edges in the six faces of a cube. After working out that
there is a 31.7 degree angle between the cube's face and the dodecahedron's face, it is straightforward to
set a saw to cut twelve times at this angle and remove everything from the cube that is not interior to the
dodecahedron. This key insight was used by Sharp to cut not just the dodecahedron and icosahedron, but
many other  polyhedra  with  icosahedral  symmetry.  Once  understood,  the  idea  is  so  fundamental  and
natural that it has even been proposed as a kindergarten activity to extend Froebel's gifts in a 1906 book by
Minnie  Glidden [5],  but  instead  of  using  a  wood-saw,  she  cuts  clay cubes  with  a  knife.  Nowadays,
YouTube has many woodworking videos demonstrating similar methods [23]. 

   Very precise wood polyhedra are often used as construction units in the fabrication of geometric puzzles.
Stewart Coffin details how to make and use jigs and a sliding table to accurately cut truncated octahedra,
rhombic dodecahedra, etc. with a table saw. [2]  Similar setups, adapted for the appropriate cutting angles,
can theoretically produce any desired polyhedra. Hiroshi Nakagawa has produced a pamphlet describing
the methods  he uses  to  make beautiful  models,  including all  the  Archimedean solids,  from Japanese
cypress wood [17]. (In some cases he first cuts temporary facets used only for alignment purposes.)

    An experienced woodworker should find these materials to be a sufficient reference for setting up their
saw to produce interesting solid polyhedra, but I can not recommend a table saw for novices because there
are many safety issues. A significant number of woodworkers are walking around with fewer than ten
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fingers. Instead, I suggest that it  is safer to begin by using a power disc sander than a saw. A sander
removes material in a different manner than a saw: the work-piece moves into the plane of the disc instead
of along the plane of a saw blade. So  the process is slightly different,  but the fundamental geometric
knowledge required—the angles between planes and depth of material to remove—is unchanged. 

    Figure 9a shows Platonic and Archimedean solids produced in this manner from 1.5 inch cubes of pine.
Some prisms and antiprisms are included, being in the same family with regular faces and equivalent
vertices. Figures 9b and 9c show a great rhombicosidodecahedron and a snub dodecahedron also made by
sanding,  but  from a  larger  4-inch  cube.  The  necessary  angles  and  depths  can  be  worked  out  from
references in the geometry literature [3, 12, 18]. The supplement [9] to this paper gives technical details.

Conclusions
Polyhedra,  with  their  timeless  beauty,  simplicity,  and  symmetry,  are  essential  objects  to  the  human
imagination.  Building  wooden  polyhedra  connects  us  physically  with  enduring  ideas  that  span  the
centuries,  from  Platonic  formulations,  through  the  Renaissance,  touching  abstract  and  minimalist
twentieth century art, and on to the present. They may gain extra grandeur when elevated by large size,
worthy materials, and/or masterful craftsmanship, but simply appreciating them in the mind's eye is the
crucial start. One might eventually work systematically through categories such as the Platonic solids,
Archimedean solids, Catalan solids, symmetrohedra, dual pairs, and compounds, etc., but I recommend
you start by simply picking an inspiring form and doing whatever it takes to create it. In the process you
will get to know its vertices, edges, faces, and solidity, and will also come to better appreciate the natural
properties of wood: how it is pliant enough to form with common equipment, yet strong enough to hold its
form for  decades.  An elegant  wooden model  sitting on your  desk is  an ageless  embodiment  of  pure
geometry. When you or a passerby picks it up, holds it, and spins it in the hand, the minimalist idea will
manifest itself that reducing form to its essence is a way of avoiding distractions and seeing anew the
beauty in simplicity. Enjoy the multifaceted experience!
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