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Abstract  

This paper introduces an approach for creating tilings made by the iterative fragmentation of polygons according 
to the prime factors of any integer greater than 1 (n), thus attempting to link the properties of n to a tessellation 
made of n tiles. Choosing n as the power of a base integer, the method produces non-hyperbolic bounded fractal 
tilings, rich in visual complexity. In addition, the paper presents a colouring method, which iteratively applies the 
prime factorization fractal approach to the luminosity dimension, thus synchronising colour and geometry along 
the iterative tiling process. 

 
Prime Factorization Tilings 

As I am fascinated by Number Theory, in order to visualize number properties, I explored the idea of 
fragmenting regular polygons into tessellations according to the prime factors of an integer [2]. The 
proposed tiling approach starts from selecting an integer (n ≥ 2), and decomposing it into its prime factors 
sorted for example in ascending order (n=p1 p2 … pk). Then it selects an initial regular polygon, whose 
number of sides is function of p1. Afterwards the initial shape is fragmented into p1 tiles, similarly to 
“splitting a pie”. Each resulting tile is then furtherly fragmented into p2 tiles, and the process is iterated until 
the prime factors of n are exhausted: the substitution rule at level i is determined by pi. The fundamental 
theorem of arithmetic ensures that each n produces a unique tiling structure, made of n tiles (Figure 1). 

In this paper I extend my idea by investigating the case where n is the power of an integer base (n=bl) 
and produces a fractal as the exponent (l) increases. In order to reach this objective, I adopt a new approach 
for the iterative tiles splitting, suited to fractals; and I introduce a colouring method, which consists of a 
one-dimension prime factorization fractal synchronised with the geometry. 

  

(a)                                                 (b) 

Figure 1:  Prime factorization of (a) n=4025=5·5·7·23 and (b) n=4068=2·2·3·3·113, from[2]. 

 
The Geometry of Prime Factorization Tilings 

In order to split a polygon (tile Tj , where j is the tile index) with e edges into pi sub-tiles, I apply four steps: 

A) Select a central point within the polygon (central vertex Vc), e.g. the barycentre 

B) Define a reference point on the tile border (synch point V0). In this paper I choose the vertex Vc of 
the parent tile Tp (tile from which Tj was originated), i.e. V0(Tj)=Vc(Tp) 

Bridges 2022 Conference Proceedings

403



 

 
 

C) Create the sub-tiles by splitting the border in pi equal parts (split metric), starting from V0 and 
connecting each two selected consecutive vertices to Vc. In some variations the starting point can be taken 
at a defined distance from V0 (shift S0) producing alternative interesting configurations. 

D) When necessary, normalize the resulting tiles order by appropriately adding vertices on the edges 
(tile normalization). 

The above steps A-D are jointly defined in order to reach two objectives that contribute to the final 
symmetry of the image: (Ob1) adjacent tiles are split so that their sub-tiles are aligned on vertices’ positions 
along the common border, (Ob2) the produced sub-tiles have a coherent vertex numeration, therefore 
enabling a coherent splitting and colouring in the following iteration phases. 

The driving choice is the definition of the split metric (C). A natural method would be to divide the 
tile perimeter in equal pi parts using Euclidean metric (E(P1, P2) in the following), however this approach 
does not align the sub-tiles vertices during the iteration process (Ob1), see Figure 2 (a) for n=455. In [2] I 
introduced a specific metric, defining the distance of two points P1, P2 (GE(P1, P2)) as: 

GE(P1, P2) = E(P1, P2)/E(Vi-1, Vi), if P1 and P2 are on the same edge delimited by Vi-1, Vi 

GE(P1, P2) = GE(P1, Vi) + k + GE(Vi+k, P2), if P1 and P2 are separated by vertices Vi,Vi+1…Vi+k.  

The proposed metric GE combines Graph and Euclidean distances, and requires an ordering of the 
vertices, which is carried out in step (B). This approach has to be used together with the normalization of 
all sub-tiles to order 4, which is done for triangles by adding a vertex V such that GE(V0, V)=1.5, that is by 
adding a vertex at the midpoint of the external edge vs V0. The final result is shown in Figure 2 (b) for 
n=435. Interesting patterns are obtained also by using a shift S0=e/2, which preserves the overall symmetry. 

    

(a)                                      (b)                                      (c)                                       (d) 

Figure 2:  Tiling of n=455=5·7·13 by approach: (a) Euclidean, (b) Graph-Euclidean, (c) Modular-3,    
(d) Modular-4. 

A further approach is to split a tile with e edges in pi sub-tiles by assigning to each edge pi/e (quotient) sub-
tiles, and distributing the remaining pi modulo e (remainder) sub-tiles appropriately in order to keep the 
symmetry. For example, for e =3 and pi =5 by assigning the remainder 2 tiles, one to the edge V0-V1 and 
one to the edge V2-V0, and for e =3 and pi =7 by assigning the remainder 1 tile to the edge V1-V2.  

I investigated two alternatives: 1) “Modular-3” in which all created tiles are triangles, achieved by 
ensuring that at each step sub-tiling always includes the vertices of the parent tile (Figure 2-c); 2) “Modular-
4” in which any created tiles has order 4, achieved by normalizing triangles into quadrilaterals, e.g. by 
adding an additional vertex at point P: GE(Vo, P)=1.5 (Figure 2-d). Modular-4 approach is employed by 
adopting a shift S0=0.5 (in GE metric). In both approaches a specific splitting choice is required for pi=2. 
 

Prime Factorization Fractals Tilings 

Choosing n=bl, where b=p1 p2… pk, and sorting the factors of n as (p1…pk, p1…pk, …) “power-ordering”, 
the tiling process produces a fractal as the integer l (levels) increases; indeed, after that the initial polygon 
is split according to the factors of b (first level, l=1) each resulting tile will be further split according to the 
factors of bl-1, producing a self-similar non-hyperbolic bounded tiling [1] (Figure 3). 
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Figure 3: Tiling of n=51, 52, 53, 54, 55, Modular-4 approach. 

 

The Modular approach, introduced in this paper, produces rich patterns for many b fractals, see Figure 4 
for n=153=(3·5)3 created with modular-4 and Graph-Euclidean approaches all other things being equal 
(using Binomial colour Intensity distribution, see further explanations). 

The subcase n=3l in Modular-3 approach, with a shift S0= 0.5 and eliminating the central vertex, e.g. 
directly connecting the new vertices during the splitting process, is equivalent to the Sierpinski triangle. 

  

(a)                                                                        (b) 

Figure 4:  Tiling of n= (3·5)3 by approach: (a) Modular-4, (b) Graph-Euclidean. 
 

From “Colouring the Fractal” to “Fractalizing the Colour” 

In the previous artwork [2], based on sorting the factors pi in ascending-order, I coloured the tiling in the 
Hue, Saturation and Intensity colour space (H, S, I) by defining H and I as functions of the tile index modulo 
the product of a subset of the prime factors of n. I selected larger factors for I and smaller ones for H: this 
approach puts in evidence the details through the luminosity, while providing an overview of the tessellation 
distribution through the Hue (Figure 1). S is defined as a linear function of I. 

In the case of fractals, where a power-ordering is adopted, a different approach is necessary in order 
to maintain the structure self-similar while increasing l. I propose to produce a 1-dimension fractal of I, 
synchronised with the geometric splitting process. I assign iteratively the intensity to the tiles: given n=bl, 
once defined the intensity Ia of a tile at the splitting iteration level k (k=1…l), the intensities of the 
corresponding sub-tiles Ix (x=1…b) at level k+1 are defined such as average(Ix) = Ia. This approach 
preserves the Intensity self-similarity through the iteration levels (Figure 5). I explored different 
distributions for the Ix values: e.g., linear, circular and binomial, in the last case for odd b assigning the 
average Ia to one tile. The distribution range used at each step has to be approximately normalised in order 
not to exceed the overall definition range of I [0, 1], e.g. using a multiple of the distribution standard 
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deviation calculated over l levels. Finally, different distributions can be mixed by a weighted sum for 
interesting artistic effects.  

   
Figure 5: Tiling of n= 53, 54, 55, Circular Intensity distribution, Modular-4 approach. 

For the proposed fractals I maintain the same definition of S and H used for the ascending ordering [2], as 
it has a consistent behaviour for fractals (Figure 6). 

   

(a)                                                                  (b) 

Figure 6: Tiling of n= (a) 38, (b) 104, Binomial Intensity distribution, Modular-4 approach. 
 

Conclusions 

In this paper I attempted to build a bridge between the “hidden” beauty of Number Theory and the “evident” 
elegance of Tilings through fractal tessellations based on the structure of the integers’ prime factorization, 
which acts both on geometry and colours dimensions. Several combinations of the described sub approaches 
can be used, resulting in different families of infinite tilings; I prefer some parameter sets depending on the 
used integer base. There are additional possibilities to be investigated, e.g.: fractalize also the Hue 
dimension, explore different ways for tiles normalization e.g. to order 4, represent integers’ properties 
through tiles colouring e.g. totient function. 
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