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Abstract
The seven frieze patterns are well-known but if one wants to exhibit multiple symmetries in a single strip of material,
transitions between them are necessary in order to showcase all available symmetries without abrupt changes of
design. This work explores the viable transformations among the seven conventional frieze patterns, with preliminary
consideration of extending this result to the seventeen frieze patterns which make use of color-reversal symmetries.

It is well known that there are seven different symmetry groups possible for a periodic pattern appearing
in a strip (frequently called “frieze patterns”). Many papers have discussed frieze patterns particularly in
consideration of their cultural prevalence in non-representational art [1, 4, 5, 6], and they are admirably suited
for decorative borders or narrow strips of material such as belts. To exhibit multiple patterns in a single
crafted work, however, the use of transitional states which allow one pattern to naturally flow into another
provides an unobtrusive means to use a variety of different symmetry groups within a single work. Transitions
between different tilings or tessellations have been used extensively in tiling-oriented work, particularly in
M.C. Escher’s Metamorphosis series of prints and in William Huff’s parquet deformations, which have also
been the subject of previous Bridges papers[2, 3]. Most of the work involving pattern transitions has, however,
involved deformations of a pattern while preserving a single underlying symmetry, rather than demonstrating
a variety of symmetries; a notable exception is Karl Schaffer’s explorations of symmetry in dance, where
change over time of the symmetries among groups of dancers is a widely used choreographic technique[7].
This paper seeks to illuminate how multiple different symmetries could be expressed within a single work
with suitable transitions: for instance, while the frieze groups could be illustrated with seven individual
belts, each with a different pattern, an elegant means to exhibit symmetries would allow exhibition of all
symmetries with a single belt.

Because this project is intended as a preface to an eventual exploration specifically of the color-reversal
symmetries discussed above, we can establish at the outset that it is desirable for the patterns to have an
equal amount of positive (black) and negative (white) space; this is a necessary property of any color-reversal
symmetries, but we will require it even though this work concerns patterns where it is not mandated by the
underlying symmetries. Also in consideration of later bringing this larger class of symmetries into play,
in order to properly consider the seven standard frieze symmetry groups as constituting subgroups of the
color-reversal groups, we will exhibit as representatives of these seven frieze patterns only those which do
not possess any color-reversal symmetries at all.

Subject to these restrictions, representative color-balanced patterns for the seven frieze groups are shown
in Figure 1 and identified by their standard crystallographic names. One symmetry might be said to be of

𝑝111 𝑝𝑚11 𝑝1𝑚1 𝑝1𝑔1 𝑝112 𝑝𝑚𝑔2 𝑝𝑚𝑚2

Figure 1: Seven patterns exhibiting the possible frieze symmetries
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Figure 2: Hasse diagram for the seven frieze symmetries
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Figure 3: Transformations of patterns from 𝑝111 symmetry to (a) 𝑝𝑚𝑔2 symmetry, (b) 𝑝1𝑔1 symmetry, and
(c) 𝑝1𝑚1 symmetry

lower-order than another if its group of pattern-preserving transformations is a subgroup of the higher-order
symmetry. The Hasse diagram of the poset of symmetry-preserving transformations can be seen in Figure 2.

By a transition from a lower to a higher-order symmetry, we mean a continuous deformation of the
pattern appearing in a single period such that the pattern exhibits the lower-order symmetry at all points during
the transformation, the higher-order symmetry only at the end of the deformation, and no other symmetries
at any point during the deformation. There are twelve comparable pairs of symmetries in Figure 2, noting
specifically that the comparability between 𝑝𝑚𝑚2 and 𝑝111, and between 𝑝𝑚𝑔2 and 𝑝111, are omitted from
the Hasse diagram as they are implied by transitivity of order. It would be ideal, from a point of view of
exhibiting all these comparabilities, if it was possible to produce transitions for each pair of comparable
symmetries.

Transitions Among Frieze Symmetries

The specific patterns shown in Figure 1 are such that several of the transitions are straightforward invocations of
well-known geometric transformations, which for the purpose of simplicity we will describe as being applied
to the black regions. Specifically, the pattern exhibited for 𝑝111 can be transformed into the pattern exhibited
for 𝑝𝑚11 by shearing the parallelograms into rectangles, and a similar process will transform the 𝑝112 pattern
into 𝑝𝑚𝑚2. In addition, 𝑝111 can be transformed into 𝑝112 by translating the parallelograms vertically to
the center-line and a similar process performed on the rectangles transforms 𝑝𝑚11 into 𝑝𝑚𝑚2. Finally,
𝑝111 can be transformed directly into 𝑝𝑚𝑚2 by performing both of these transformations simultaneously.
A similarly straightforward transition on the examples given is the result of shearing the trapezoids shown
for 𝑝1𝑔1 into the isosceles trapezoids of 𝑝𝑚𝑔2. For purposes of brevity, none of these simple transitions are
exhibited in full.

Because 𝑝111 is a very permissive symmetry, free deformation of the 𝑝111 pattern into the three patterns
for which its transition has not yet been described (𝑝1𝑚1, 𝑝1𝑔1, and 𝑝𝑚𝑔2) are also quite straightforward,
although deformation in an area-preserving manner into 𝑝1𝑚1 is arithmetically somewhat messy. In partic-
ular, the 𝑝111 to 𝑝𝑚𝑔2 transition can be easily obtained by bisecting each parallelogram into two trapezoids,
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Figure 4: Transformations of patterns from (a) 𝑝𝑚11 to 𝑝𝑚𝑔2 symmetry, (b) 𝑝1𝑚1 to 𝑝𝑚𝑚2 symmetry,
and (c) 𝑝112 to 𝑝𝑚𝑔2 symmetry

Figure 5: A frieze of 61 repetitions, undergoing all twelve transitions; transition endpoints are shown in red.

and translating one of them upwards and rightwards. This transformation is exhibited linearly in Figure 3a.
The transformation to 𝑝1𝑔1 is quite similar, incorporating a shear element as seen in Figure 3b. To transform
to 𝑝1𝑚1, the two rightmost vertices of the parallelogram can be freely moved towards the right vertex of the
triangle while the upper left vertex moves further up and left; although two of those motions are linear, in
order to preserve area the lower right point will in fact trace out a parabolic path. This transform can be seen
in Figure 3c.

The graph in which each symmetry is represented by a vertex and valid transitions are represented by
adjacencies is very nearly visually identical to the Hasse diagram in Figure ; the only difference is that the
comparability that both 𝑝𝑚𝑚2 and 𝑝𝑚𝑔2 have to 𝑝111, which is left implicit in a Hasse diagram, would be an
edge in the graph of transitions. Eulerian or Hamiltonian traversals on this graph would represent showcases
respectively of every transition and of every individual symmetry.

Although an Eulerian circuit is not possible on the graph of transitions, as both 𝑝𝑚11 and 𝑝112
participate in three transitions each, an Eulerian trail from 𝑝𝑚11 to 𝑝112 on the graph of transitions is
possible, which means it is possible to make a strip of material which exhibits all the possible transitions
between states. Such a strip, with each transition consisting of five repetitions per transition, is illustrated
in Figure 5. This particular strip corresponds to the Eulerian trail which in turn visits the vertices 𝑝𝑚11,
𝑝𝑚𝑚2, 𝑝1𝑚1, 𝑝111, 𝑝𝑚𝑚2, 𝑝112, 𝑝𝑚𝑔2, 𝑝1𝑔1, 𝑝111, 𝑝𝑚𝑔2, 𝑝𝑚11, 𝑝111, and 𝑝112.

Period modification

It is notable that any symmetry with a horizontal axis of reflection does have a glide reflection, but a glide
reflection whose associated translation distance is a full period, rather than half of one. There is thus a
sense in which the Hasse diagram in Figure 2 is not entirely accurate: 𝑝1𝑚1 and 𝑝2𝑚𝑚 have glide-reflection
symmetries and thus their symmetry groups are a superset of the symmetry groups of 𝑝1𝑔1 and 𝑝𝑚𝑔2,
albeit on a period twice as large. A fuller exploration of transitions among symmetries would thus consider
relationships not only among symmetry groups of a single period, but also considering their relationships
with symmetry groups on periods whose length has been halved or doubled.

If we denote the symmetry groups on a half period with a subscripted 2, then we could consider an

Transition Processes for Frieze Patterns

385



expanded poset of the fourteen full-width and half-width symmetries where in addition to the established
orderings within the full-width subposet and the half-width subposet, and the comparability between each
full-width symmetry and its half-width variant, we would also have the comparabilities 𝑝1𝑔1 < 𝑝1𝑚12 and
𝑝𝑚𝑔2 < 𝑝𝑚𝑚22. This structure could be extended indefinitely upwards or downwards, with subposets for
not only a halved period, but also quartered or smaller, and in the opposite direction, for doubled, quadrupled,
and so forth.

Future work

There are many other families of symmetries on which the question of designing transitions between the
symmetries may be of interest for building a showcase work exhibiting multiple symmetries. This project
was originally born out of a desire to build a design a woven belt showcasing all the seventeen frieze
antisymmetries systematized by Weber [8], which would depend on a plan to exhibit all of the symmetries
via a Hamiltonian traverse on the transition graph for frieze antisymmetries, or more ambitiously an Eulerian
traverse to exhibit all the antisymmetry transitions. This same process of identifying transitions may also
be of relevance to the seventeen planar symmetries, also known as the “wallpaper patterns”, or the forty-six
“counterchange” plane symmetries of H.J. Woods [9]. Transitions in plane symmetries, however, present
distinct challenges and opportunities: not only the patterns but also the fundamental domains must change
shape as part of the transition, and the ability to transition a pattern in two different directions along the
two different axes means that the underlying structure of a work undergoing transitions might be richer than
simply a walk through a graph.
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