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Abstract

We present our current progress on a virtual reality sandbox experience equipped with a toolset to create interactive
vector fields and vector calculus operations. The aim of the project is to empower the student’s understanding of
vector field and assist in the development of their intuition. The source code for this project is open-source and
available at https://github.com/OthmanAlrawi/Visualizing-Vector-Fields.

Introduction

Figure 1: Demonstration of the electric field module.

The mathematics taught in classrooms is very of-
ten presented under a veil of abstraction. One such
concept – the vector field – requires a high degree
of visualization that cannot be provided by two-
dimensional blackboards and static images in a text-
book. We used the Unity Game Engine to create a
series of real-time visualizations of vector fields and
vector calculus in R3 implemented in virtual reality
(VR). Our objective is to develop a fun and inter-
active user experience that not only assists students
in developing mathematical intuition but also uses
modern video game techniques to incentivize learn-
ing goals. To construct this “gamified” experience,
our simulation employs two key features of game
development: real-time and interactivity.

Spatial thinking is a critical skill from vec-
tor calculus that is used in many fields, includ-
ing physics, engineering and chemistry as concepts
move from 2D representations to fully 3D systems
[7]. Recently, there has been a push in STEM edu-
cation towards both inquiry based learning models,
often using digital “textbooks” with animations and
other dynamic graphics. See, eg [8]. However, us-
ing interactive media is an additional tool that can
empower the students to manipulate concepts graph-
ically to build intuition for mathematical and phys-

ical phenomena. Embodied cognition is one way of building a language for students to both describe and
explain spatial concepts [10]. Virtual and augmented reality (VR and AR, respectively) promise to revo-
lutionize learning [11, 9, 6]. Not only do they provide a platform for individualized, embodied learning,
but they can help build students agency which in turn can give students a sense of ownership over their
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coursework, as demonstrated in Figure 1. This level of interactivity is frequently lost in large or online-based
courses. “Visualizing Virtual Vector Fields” is an open-source VR sandbox that can be used in conjunction
with formal classes or as a stand-alone learning tool to help students develop intuition about vector fields,
scalar fields and vector derivatives.

Vector Fields

(a) negative charge

(b) positive charge

Figure 2: The electric field generated
by a point charge.

A vector field assigns a vector to each point in a subset of a space.
A vector element, specifically a euclidean vector, is a geometrical
object that has both a magnitude and direction. Typically, vectors
are graphically represented by arrows that connect two points. This
representation captures both key aspects of a vector perfectly. For
this reason vector fields are usually drawn as a collection of arrows
at discretized points in space. While books are limited to two dimen-
sional projections, we are free from those restrictions. In Figure 2,
we illustrate the electric field E(r) associated with a charged particle
at position r′,

E(r) = ��
r − r′

|r − r′|3
, (1)

where � is a constant and � is the charge of the particle. Users can
place and move charges around the playspace and the field visualiza-
tion updates in realtime.

Field Lines and Dynamic Interactivity

The depiction of a vector field as a grid of arrows can be misleading
to students as it presents them as discrete, rather than continuous objects. We augmented our simulations
with a few methods to illustrate the continuity. Field lines are one dimensional curves that are tangential to
the field along all of its points. For a vector field v, a field line �(�) parameterized by � must satisfy

��

��
= v(�(�)), (2)

where � is the arclength parameter. In Figure 3 and Supplementary Video 1 [2], we illustrate the field lines for
a configuration of point charges, whose electric field is given by a superposition of the fields of an individual
particle.

(a) a negative charge (blue) and a positive charge
(red)

(b) arbitrary configuration of charge

Figure 3: Fields lines of vector fields coming from two different charge distributions.
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Figure 4: Interactive test particles.

Drawing the electric field lines frees us from the restrictions imposed by a 3D arrow mesh that portrays
the field at discretized points, giving us the ability to express fields in a more continuous manner. Along
these lines, the vector field is no longer represented by a set of local vectors with a direction and a magnitude.
At each point along the curve, the tangent to the curve gives the direction of the vector field. We use color
to quantify the magnitude of the field. The color gradient is created by linearly interpolating between two
colors based on the maximum and minimum values of the field. Ultimately, we find a combination of both
illustrations provides more intuition.

To make the visualization more interactive we introduce “test particles” that flow along the vector field.
These are interactive game objects that undergo forces according to the direction of the fields in real-time, as
seen in Figure 4 and Supplementary Video 2 [3]. These test particles are simulated using Unity’s 3D physics
that implements Nvidia’s PhysX Engine, which uses a semi-implicit Euler integrator [1]. Since we are not
trying to find exact numerical solutions but rather are mainly concerned with the general qualitative behavior,
we believe the accuracy lost by using a fast integrator designed for video games doesn’t come at the cost of
user experience.

Vector Derivatives

(a) ring distribution (b) a pair of charges

Figure 5: Isosurfaces.

Vector calculus requires that we not only perform operations such as addition or multiplication on a
vector field, but we also need to take derivatives of it. In R3, the three elementary differential operators are:

• Gradient: For the scalar field � : R3 → R, the gradient ∇� : R3 → R3 is a vector field that measures
the direction and rate of change of �.
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• Divergence: For the vector field v : R3 → R3, the divergence ∇ · v : R3 → R is a scalar field that
measures the source of v at every point.

• Curl: For the vector field v : R3 → R3, the curl ∇ × v : R3 → R3 is a vector field that measures the
rotation of v in a given direction.

To illustrate these operators, we need to visualize scalar fields as well as vector fields. Given a scalar
field 𝜙, we plot its isosurfaces. These are surfaces in R3 where 𝜙 is constant. We use the Marching Cubes
algorithm to construct such surfaces. This is a computer graphics algorithm that is used to construct meshes
of an isosurface from a three dimensional scalar field [5]. In order to update these surfaces in real-time,
as shown in Supplementary Video 3 [4], we use a multi-threaded implementation of the Marching Cubes
algorithm. In Figure 5, the we plot the isosurfaces for two electric potentials 𝜙, where E(r) = −∇𝜙(r).

Conclusion & Future Work

We plan to incorporate more activities into the vector derivatives module aimed at increasing student intuition
of vector derivatives. For example, we can evolve surfaces in R3 according to the gradient of a scalar field.
Additionally, we would like to marry students’ mathematical intuition with physical concepts. The curl shows
up prominently in magnetostatics as well as in vortices formed in inertial fluids. In the future, we will present
several of these to students in courses on multivariable calculus and introductory electomagnetism to explore
the efficacy of “Visualizing Virtual Vector Fields” as a learning tool.
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