
Deltoidal kaleidoscopes

Josep Rey Nadal,1  and  Manuel Udina Abelló2

1Museu de Matemàtiques de Catalunya (MMACA); jrey@xtec.cat
2Museu de Matemàtiques de Catalunya (MMACA); manuel.udina@mmaca.cat

Abstract

We present deltoidal kaleidoscopes that allow one to visualize not only the Platonic and the Archimedian solids,
but also their duals. They were premiered in the exhibition “Imaginary, a Mathematical Symphony” hosted by the
Universitat Politècnica de Catalunya (Barcelona, September-December 2021).

Polyhedra and kaleidoscopes

Regular polyhedra have many planes of symmetry. By placing mirrors on those planes, we can generate
kaleidoscopes which, from a fraction of a polyhedron, allow us to visualize the whole object.

For example, if  we use mirrors to build the “baseless inverted pyramid” that connect the center of a
regular polyhedron with one of its faces, and then place a hollow face on top, we can visualize the whole
polyhedron. These are called regular kaleidoscopes and they “multiply” by 4, 6, 8, 12 or 20 depending on
which Platonic solid we use.

Figure 1: The regular kaleidoscopes that result from the five Platonic solids

Minimal kaleidoscopes

There are many types of kaleidoscopes that are able to reproduce a given solid, so it makes sense to look
for the smallest ones, and then combine these minimal kaleidoscopes to obtain the other families.

Figure 2: Minimal, deltoidal, rhombic and regular octahedral kaleidoscopes.

We have briefly described the regular kaleidoscopes and we use the rhombic kaleidoscopes  in the
permanent  exhibition  of  the  Catalan Museum of  Mathematics  (MMACA).  In this  paper  we  want  to
introduce the deltoidal kaleidoscopes, but in order to do so we need to take a closer look at the minimal
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kaleidoscopes and study their properties.

Minimal octahedral kaleidoscope
Let’s start with the octahedron. It has 9 planes of symmetry. As shown in 
Figure 3 they divide each face into six equal triangles, and the octahedron into
48 equal pieces. Each piece is an inverted pyramid that has its apex at the
center of the octahedron and its base on each of the aforementioned triangles.

Therefore, the smallest  part  of  the octahedron that  allows the whole
octahedron to be reconstructed by symmetries is 1/48th of the total and we
could  use  it  to  create  a  minimal  octahedral  kaleidoscope  with  dihedral
angles of 45º, 60º, and 90º. The edges of dihedral angles are called S8, S6
and S4, respectively.

Figure 3: Octahedron

The octahedron and the  cube  have  the
same planes of symmetry, which means that
the cube could also be decomposed into 48
equal  pyramids  with  the  same  dihedral
angles but a different base.  Figure 4  shows
how the S4, S6 and S8  edges of the cubic
and the octahedral pyramids are parallel and
therefore give rise to the same kaleidoscope.

Figure 4: Minimal octahedral kaleidoscope

In this minimal kaleidoscope, the cube will be obtained with a “half half-edge” perpendicular to S4 on
the opposite side of S8 whereas the octahedron will require a “half half-edge” perpendicular to S4 but on
the opposite side of S6. These two edges meet at a point of S4 which shows the duality between these
solids. Since in both cases we use 1/4 of an edge, and the minimal octahedral kaleidoscope multiplies by
48, the 12 edges of the cube and the octahedron will be generated.

Minimal icosahedral kaleidoscope
The dodecahedron and the icosahedron also
share  their 15  planes  of  symmetry,  and
minimal kaleidoscopes can be obtained from
1/120th of these solids. In the first case, each
face  gets  divided  into 10  equal  triangles,
whereas in the second case each face can be
divided into 6 equal triangles. Both kinds of
pyramids have the same dihedral angles of
36º,  60º,  and  90º  and  their  corresponding
edges are called S10, S6, and S4. (Figure 5)

Figure 5: Minimal icosahedral kaleidoscope

In  this  minimal  kaleidoscope,  the  dodecahedron  will  be  obtained  with  a  “half  half-edge”
perpendicular to S4 on the opposite side of S10 whereas the icosahedron will require a “half half-edge”
perpendicular to S4 on the opposite side of S6. These two edges meet at a point of S4 which shows the
duality between these solids. Since in both cases  we use 1/4 of an edge, and the  minimal icosahedral
kaleidoscope multiplies by 120, the 30 edges of the dodecahedron and the icosahedron will be generated.
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Deltoidal kaleidoscopes

We  can  focus,  at  last,  on  the  main  subject  of  this  paper,  the  deltoidal
kaleidoscopes that result from joining a pair of minimal kaleidoscopes  by their
"hypotenuse" (the face opposite to the right dihedral angle).

Deltoidal icositetrahedral kaleidoscope
From  the  combination  of   two  minimal  octahedral  kaleidoscopes  (1/48),  we
obtain a deltoidal icositetrahedral kaleidoscope (1/24) with three dihedral angles
of 90º and a fourth one of 120º.  The two S4 edges keep their names  while the
union of two  S8  axes is now called D4 and the union of two S6  edges is now
called D3.  The base  that  is  perpendicular to  the  intersection  of  the  diagonal
planes  of  this  kaleidoscope is  a  deltoid.  More precisely,  it  is  the  face  of  the
Catalan solid deltoidal icositetrahedron (dual of the small rhombicuboctahedron).
(Figure 6)

Figure 6: Deltoidal
icositetrahedral

kaleidoscope

The cube is generated with a piece formed by two “half half-edges" at 90º, with the vertex on the D3
edges and in a plane perpendicular to D4. The careful construction of the pieces, with the right  slope,
makes them fit naturally into place. Since this piece contains “1/3 of the vertex” and two quarters of the
“edge”, and the deltoidal icositetrahedral kaleidoscope multiplies by 24, the 8 vertices and 12 edges are
generated.

We  generate  the  octahedron
analogously  with  two "half  half-
edges" at 60º  with the vertex on the
opposite  D4  edges and  in  a  plane
perpendicular to D3.  (Figure 7)

The  third  piece  in  the  Figure  8
generates the intersection of the cube
and the octahedron: a cuboctahedron.

Figure 7: Cube and octahedron

Figure 8: The pieces that generate the Platonic and Archimedean solids of the octahedral group
in the deltoidal icositetrahedral kaleidoscope must be symmetrical and have this appearance.

Deltoidal hexacontahedral kaleidoscope
From the combination of   two minimal  icosahedral kaleidoscopes (1/120),
we  obtain  a  deltoidal  hexacontahedral kaleidoscope  (1/60)  with  dihedral
angles of 90º, 120º, 90º and 72º. The dihedral axes are named, respectively,
S4, D3, S4 and D5. The base that is perpendicular to the intersection of the
diagonal  planes  of  this  kaleidoscope  is  the  face  of  a deltoidal
hexacontahedron (dual of the rhombicosidodecahedron).

Figure 9: Deltoidal hexacontahedral kaleidoscope and its pieces
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In  this  deltoidal  kaleidoscope,  the
dodecahedron  is  generated by  a  piece
formed  by  two  “half  half-edges”  at
108º, with the vertex on the D3 axis and
in a plane perpendicular to D5.  Since
this  piece contains “1/3 of the vertex”
and 1/2 of the “edge”, and the deltoidal
hexacontahedral kaleidoscope
multiplies by 60, the 20 vertices and the
30 edges are generated.

Figure 10: Dodecahedron and icosahedron

We generate the icosahedron analogously with two “half half-edges” at 60º, with the vertex at the D5
axis  and in  a  plane  perpendicular  to  D3.  The  third  piece  in  the  picture  above allows  us  to  see  the
icosidodecahedron as the intersection of the icosahedron and the dodecahedron. (Figure 11)

Figure 11:  The five Archimedian polyhedra in the deltoidal hexacontahedral kaleidoscope

More information about kaleidoscopes and related topics in this paper can be found in [1-5]. 
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