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Abstract

We describe an analytical method of constructing Boy’s surface which uses Thurston’s corrugation technique to add
period-3 waves to an image of the 2-sphere. This construction allows us to build a simple machine which can draw
Boy’s surface in space.

Introduction

A hundred and twenty-two years ago, David Hilbert suspected that it is impossible to immerse the real
projective plane R%2 in R3. He asked his doctoral student Werner Boy to prove it. Instead, Boy discovered
the opposite, finding an immersed image ofR%2, later called Boy’s surface. Boy’s description was qualitative,
relyingmostly on pictures. Afterwards, analytical formulaswere found, such as those byMorin, Petit-Souriau,
Hughes, Bryant-Kusner, and Apéry, summarized in the book [1]. In this paper, we present another analytical
formula, which inspired the construction of a simple machine that draws Boy’s surface in space.

To understand the abstract surface R%2, imagine the planet Earth, modeled by the unit sphere (2 in R3,
with the north pole # at (0, 0, 1) and the south pole ( at (0, 0,−1). On R%2, these two poles are considered
the same point, and in general, R%2 identifies any two antipodal points on (2. It is not immediately clear that
R%2, an abstract geometric space, can be immersed in R3, as its representation would possess qualities which
are difficult to visualize. For example, unlike (2, R%2 contains a Möbius strip, so it must intersect itself as a
closed surface in R3 [8]. Additionally, the surface must contain a triple point [2].

Figure 1: Boy’s surface is an image of (2 in R3; The formula � = 1 +,3.

The Boy’s surface constructed in this paper is an immersed image of a smooth map � : (2 → R3 with each
pair of antipodal points mapped to the same location. � is given by the formula

� = 1 +,3, (1)

where 1 : (2 → R3 is a base map collapsing the equator to a single point, and is thus not an immersion. To
remove this singularity without creating new singularities, we add ,3 : (2 → R3, a period-3 wavy surface
which wraps around the image of 1 via an orthonormal frame field, and whose amplitude grows from zero
at the poles to a maximum on the equator. This method of viewing a surface as the composition of a simpler
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base surface and a wavy surface (Figure 1) is due to William Thurston. It was used in his method of everting
the sphere, as illustrated in the movie Outside In [6].

In this paper, we first review the analytical theory of Thurston’s corrugation method [7] using curves in
the plane, as an analogy for understanding the subsequent 3D construction of the Boy’s surface. Then we
describe a machine inspired by Formula (1), which is used to paint Boy’s surface in the dark using electronic
lights.

Wave

Consider the parametrized curve 5 (C) = 〈H(C), I(C)〉 on the HI plane:

H(C) =


−2 cos 2C 0 ≤ C ≤ c/2
2 c/2 < C ≤ c
2 cos 2C c < C ≤ 3c/2
−2 3c/2 < C ≤ 2c

I(C) =


1 0 ≤ C ≤ c/2
− cos 2C c/2 < C ≤ c
−1 c < C ≤ 3c/2
cos 2C 3c/2 < C ≤ 2c

(a) The components H(C) and I(C) are �1. (b) But 5 ′(C) = 〈0, 0〉 at the four vertices.

Figure 2: The rectangular curve 5 (C) = 〈H(C), I(C)〉 is �1 but not regular.

The curve 5 is �1, as both derivatives H′(C) and I′(C) exist and are continuous (Figure 2a). However, 5 is not
regular as 5 ′ vanishes at four points. Its image is a rectangle, with four sharp corners (singularities) at points
where 5 ′(C) = 〈0, 0〉 (Figure 2b). We will remove the singularities of 5 by adding waves, which we construct
using the following periodic curve 8 : R→ R2:

8(C) = 〈− sin 2C, 2 sin C〉.

As C increases from 0 to 2c, 8 begins at the origin, moves northwest, then traces an “8” on the HI plane
(Figure 3a). The derivative 8′ lies in an annular sector missing the quarter symmetric about the negative
H-axis (Figure 3b). This feature is important for maintaining regularity when the amplitude of waves become
variable and small, especially near the poles of the base map 1 in Formula (1) as we’ll see in the next section.

Now consider 08(=C), which is 8 with adjusted amplitude 0 and frequency = of oscillation. Adding to
5 (C) gives:

�1(C) = 5 (C) + 08(=C),

shown in Figure 4a. To see that �1(C) is regular, note 5 ′(C) is continuous over the compact domain [0, 2c], so
5 ′(C) is bounded, and we may choose 0 and = such that 0= large causes 0=8′(=C) to lie outside a sufficiently
big circle containing 5 ′(C) in its interior. This ensures

��0=8′(=C)�� > �� 5 ′(C)�� everywhere, which implies that
� ′1 (C) is never zero. For �1 to keep semblance with 5 , the amplitude 0 of the waves cannot be too large, but
this is compensated with big =. Note that adding 8 may change a curve from an embedding to an immersion,
as is the case for �1.
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(a) Image of 8. (b) Image of 8′. (c) � (C) = 6(C) + '(C)8(3C).

Figure 3: The model figure-8 curve and its derivative used in this paper; Planar “trefoil”.

When constructing the 3D Boy’s surface, pointwise variation of amplitude and pointwise rotation of waves
are also necessary. In the 2D case, the former can be done using a �1 function �(C):

�2(C) = 5 (C) + 0�(C)8(=C),

which is illustrated in Figure 4b with �(C) = 1 + 1/2 cos 4C. The latter can be done using a �1 map
' : R→ ($ (2), where ($ (2) is the space of 2 × 2 orthonormal matrices with determinant 1:

�3(C) = 5 (C) + 0�(C)'(C)8(=C).

The result of pointwise rotation is shown in Figure 4c with '(C) =
[
cos C − sin C
sin C cos C

]
.

(a) �1 (C) = 5 (C) + 08(=C). (b) �2 (C) = 5 (C) + 0�(C)8(=C). (c) �3 (C) = 5 (C) + 0�(C)'(C)8(=C).

Figure 4: Corrugated rectangles where 0 = 0.1 and = = 50.

The formula for Boy’s surface to be discussed in the next section is a 3D version of �3(C) using corrugation
with much lower frequency (= = 3). The corrugation, whose waves expand and rotate in 3D space, is used to
remove a singularity that is the image of the equator. Its effect can be understood by the 2D example in Figure
3c where 6(C) := 〈0, 0〉 maps a circle to a single point, and is thus not regular. The addition of '(C)8(3C)
introduces three uniformly rotated “8”s to 6 so that � is regular, and whose corrugation is contained to the
plane. In 3D, the extra dimension provides space where the image of the equator can be folded into a twice
traversed trefoil.
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Boy’s Surface

Consider the sphere (2 as our planet Earth and let q be the polar angle, i.e., the angle of latitude, which is
c/2, 0 and −c/2, at the north pole, the equator and the south pole, respectively. Let \ be the azimuthal angle,
i.e., the angle of longitude, which is 0 for the prime meridian (the half circle from pole to pole intersecting
the positive G-axis), and is the same \ as in spherical coordinates. The definition of q differs from spherical
coordinates, as rather than measured from the positive I-axis downward, it is measured from the GH-plane
upward as shown in Figure 5a.

(a) Definition of \ and q. (b) Image of 1 (c) Image of �

Figure 5: The sphere (2, the image of the base map 1, and the Boy’s surface in this paper.

Define the base map 1 : (2 → R3 as:
1(\, q) = A (\); (q),

where A (\) is the rotation matrix about the I-axis through angle \, i.e. A (\) =
[cos \ − sin \ 0
sin \ cos \ 0
0 0 1

]
, and ; (q) =

〈0, 0,− 12 〉 +
1
2 〈− sin 2q, 0, cos 2q〉, with “〈” and “〉” enclosing column vectors. The image of 1 is shown in

Figure 5b with \ and q values.
One can check that 1(\ + c,−q) = 1(\, q), so 1 maps antipodal points on (2 to the same point in R3.

Thus, the image of 1 is a representation of R%2 in R3. Note 1 is regular1 everywhere except on the equator
q = 0, which is mapped to a single point by 1. To remove this singularity, we add waves to the base map 1.

Let 8 : R→ R3 be defined by 8(C) = 〈0,− sin 2C, 2 sin C〉. This is the 8 in the previous section as a spatial
curve, and we add it to 1 after adjusting its orientation, amplitude, and period.

(a) Orthonormal frames
along ; (q).

(b) We use _(q) to slow
down the turning of

frames near the poles.
(c) The amplitude 0�(q)

seen on ; (q).

(d) We use �(q) to adjust
the amplitude of waves,
which is 0 at the poles.

Figure 6: The frame '(q), the saturation function _(q) and the amplitude adjusting function �(q).

An orthonormal frame field '(q) =
[
) (q),* (q), + (q)

]
, pictured in Figure 6a, rotates 8. The columns of

'(q) are defined as follows.

1That 1 is regular means away from the poles, m1
mq

and m1
m\

are linearly independent; in neighborhoods at the poles, we can use
Cartesian coordinates: m1

mG
and m1

mH
are linearly independent. On the equator q = 0, m1

m\
= 〈0, 0, 0〉 so 1 is not regular.
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First, ) (q) := ; ′(q) or the unit tangent vector along the image of the prime meridian:

) (q) = 〈− cos 2q, 0,− sin 2q〉.

Second, * (q) is a vector turning about ) (q), which we define using # (q), a unit vector perpendicular
to ) (q) that points toward (0, 0,−1/2), the center of the image of 1:

# (q) = 〈sin 2q, 0,− cos 2q〉.

Then * (q) is a vector turning about ) (q) on the plane spanned by 〈0, 1, 0〉 and # (q). As q goes
from −c/2 to c/2, * (q) completes a half twist from 〈0, 1, 0〉 to 〈0,−1, 0〉 through angle c. We also
use _(q) = c

2 sin(q) to slow down the turning of * (q) near the poles (Figure 6b). Altogether, * (q) =
− sin_(q)〈0, 1, 0〉 + cos_(q)# (q), or:

* (q) = 〈cos_(q) sin 2q,− sin_(q),− cos_(q) cos 2q〉.

Lastly, + (q) := ) (q) ×* (q) completes the frame:

+ (q) = 〈− sin_(q) sin 2q,− cos_(q), sin_(q) cos 2q〉.

We can think of '(q) as a miniature coordinate system, in which 8 is traced, oriented differently from
point to point on the image of ;. '(q) is an element of ($ (3), the space of orthonormal matrices with
determinant 1.

At the moment, there is an ambiguity of '(q) at the poles after applying A (\), as A (\)'(± c2 ) is different
for different \. To remedy this, we annihilate 8 at the poles using the �1 function �(q) = 1

2 +
1
2 cos 2q. In

Figure 6d we see �(q) grows from zero at the poles of (2 (with derivative zero) to a maximum value on the
equator. Figure 6c shows the resulting change in the image. The maximum amplitude 0 is set to be 0.25 in
Figures 1, 5c, 7b, and the second row of 8, though it can vary through a small range of values.

Putting these pieces together, let ,= (\, q) = 0�(q)A (\)'(q)8(=\), with = = 3 to create the three fold
symmetry in Boy’s surface. Then

� = 1 +,3 (1)
can be written as

�(\, q) = A (\); (q) + 0�(q)A (\) (− sin 6\* (q) + 2 sin 3\+ (q)).

Both 1 and ,3 map antipodal points to the same point, so � does as well, thus the image of � is a
representation of R%2 in R3.

(a) The Bryant-Kusner Boy’s surface. (b) The Boy’s surface constructed in this paper.

Figure 7: Top, bottom and side views of Boy’s surfaces

In Figure 7 we see that the Bryant-Kusner Boy’s surface [5] and our constructed surface look similar. In fact,
horizontal cross sections (on I = :) of the image of � are ambient smooth isotopic to the cross sections of
the Bryant-Kusner Boy’s surface (Figure 8 on the next page, where double points are labelled in red). The
image of � near the poles is almost a spherical cap, on which analysis with the key fact �′(±c/2) = 0 shows
that m�

mG
and m�

mH
are never zero or colinear. Away from the poles, computer computation verifies that for any

0 between 0.1 and 0.28, m�
m\

and m�
mq

are nowhere zero, and the angle between them is never 0 or c. Thus, the
image of � is indeed a Boy’s surface.
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Figure 8: Cross sections of Boy’s surfaces. Top: Bryant-Kusner; Bottom: in this paper.

Machine

Formula (1) implies that Boy’s surface can be drawn by two rotating vectors, added tip to tail. Inspired by
this idea, a machine was constructed in which a rigid arm traces the spherical image of 1 while an attached,
rotating screen draws,3. One can check that

�(\, q) = 〈0, 0,−1/2〉 + RotI (\)Rot−H (2q) [〈0, 0, 1/2〉 + Rot−G (_(q))0�(q)∞(3\)], (2)

where∞(C) = 〈0,−2 sin C, sin 2C〉, and RotI (\), Rot−H (2q), and Rot−G (_(q)) describe the counter clockwise
rotation about the I-axis, and the clockwise rotations about the H and G-axis respectively. Effectively, ; (q) is
〈0, 0, 1/2〉 rotated byRot−H (2q) with tail shifted to 〈0, 0,−1/2〉, and the action of '(q) has been decomposed
into the actions of Rot−H (2q) and Rot−G (_(q)).

(a) (b) https://www.youtube.com/watch?v=txa7jdZYw7M

Figure 9: Conceptual mechanism and practical machine for drawing Boy’s surface.

Formula (2) describes the forward kinematics of an idealized mechanism pictured in Figure 9a. As the robotic
“arm” moves about the ball-joint hinged at (0, 0,−12 ), the screen turns about the axis perpendicular to the
arm and lying on the vertical plane, and a single glowing point traces out 8. Imagine the point as a toy car
dashing around this figure-8 track. This was the analogy used in [7].

In the practical design of the machine (Figure 9b), three motors were used to produce the necessary
motion: 1) the base stepper generates uniform speed rotation RotI (\); 2) the top micro servo controls
Rot−H (2q); 3) the bottom micro servo holding the screen controls Rot−G (_(q)).

In Figure 9b, electronic and mechanical parts from Adafruit are held on a 3D-printed white frame. A
single Arduino Uno board was sufficient for control and communication, and images were captured using
long exposure photography. We programmed the machine to draw the image of �, one parallel at a time. At
different q values, the orientation of the screen and the amplitude of the figure-8 differ.
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The resulting images for 0 ≈ 0.13 are shown in Figure 10 and Figure 11, in which we see that as q gets
closer to 0, the image circle eventually folds into a twice traversed trefoil. This trefoil is different from the
trefoil curve of self-intersection of the image of 1, though they share the triple point at the origin.

Figure 10: Top views of images of the parallel q = 8 c
40 .

Figure 11: Side views of images of the parallel q = 8 c
40 .
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Notes

The method we used in this paper can be extended to construct a two-parameter family of immersed R%2 in
R3. One parameter = (≥ 3) is the period of the waves and the other parameter < is the number of half twists
of '(q) (following the right hand rule). Both = and < must be odd (and < can be negative) so that antipodal
points are identified. The Boy’s surface in this paper consists of one half twist (< = 1) and period three
waves (= = 3), thus among these immersions of R%2, Boy’s surface is the simplest. Furthermore, for any <,
Y − X proofs can be used to show that there exists an # large enough such that for any = ≥ # , the surface2 for
< and = is an immersed R%2.

These immersions can be used as halfway models for sphere eversions [9]. This was the original use
of Thurston’s corrugation technique. For any given < and sufficiently large =, an analytical formula exists
(similar to the one in this paper). Starting with this formula, (2 can be smoothly deformed into the given
immersion of R%2: the principle meridian regularly deforms to the image of ;, such that the north pole
remains on the I-axis while the south pole is stationary; meanwhile, the tangent frame of (2 is twisted into
A (\)'(q) about the tangent vectors of meridians. Since singularities only occur with respect to \, a single
layer of corrugation is sufficient (compare with [3]3). Once the immersion of R%2 is reached, we play this
movie backward with antipodal points traveling on swapped paths. Thus every point on (2 trades positions
with its antipodal counterpart, and the sphere has been turned inside out. Note that the sphere eversions
obtained from different < values can not be deformed into each other. They are like an infinite sequence of
adaptations of a movie, with pairwise distinct plot twists.
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