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Abstract
Dessins d’enfants, also called hypermaps, are closely associated with ramified coverings of the Riemann sphere—
what a layperson may prefer to think of as seamless wallpaperings of other closed surfaces with copies of the Earth’s
surface (Earth serving in lieu of the Riemann sphere.) Dessins d’enfants have been a focus of interest in recent years
in fields as challenging as number theory and quantum gravity. Let’s add basketmaking to the list. I show that Strobl’s
clever knotology weaving technique—which realizes curved surfaces in plain tabby weave by using straight (but
folded) weaving elements—suffices to make models of the Riemann surfaces encoded by dessins d’enfants. These
baskets can be folded up into a single stack of triangles—an echo of a Riemann surface being a ramified covering of
the sphere. Plans and weaving instructions are provided for an example the reader can make.

Introduction

As recently as the last decades of the 20th century researchers in many fields were working with the same
mathematical object, calling it by different names, and largely unaware of each other’s work. The book by
Lando, Zvonkin, and Zagier [2] surveys an amazing breadth of appearances of dessins d’enfants in many
fields of mathematics and science, but less known is their relevance to basket weaving. This paper shows
how a connected line drawing (perhaps one drawn by a child, as Grothendieck’s term suggests) can become,
through a rule-based, post-production process, a basket woven with the straight, constant-width weaving
strands of Heinz Strobl’s knotology weaving technique [3]. Since dessins classify Riemann surfaces, the
baskets they direct have unusual properties (Figure 1): seamlessly wallpapered by copies of the globe, they
can fold up into a single copy of the globe (a hands-on model of a ramified covering of the sphere.) I provide
plans and instructions for a simple basket of this type. Those intrigued by the connections of dessins to
polynomials and the algebraic numbers will find [5] a good introduction with many illustrated examples.

Figure 1: Because dessins classify Riemann surfaces, the baskets they direct can be covered seamlessly by
copies of the globe, and are able to fold into a single copy of the globe.
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Figure 2: From a child’s drawing to a quadrangulation.

From a Drawing to a Canonical Quadrangulation

Dessins have deep connections in mathematics—number theory in particular—areas we will not need to
touch upon. For us, dessins will just be a special sort of graph (a bicolored graph) drawn on a spherical
surface.1 Let’s look at the pipeline of how a connected, line drawing on the sphere can become a dessin and
then a basket (Figure 2.) The artist draws a line drawing (Figure 2a.) The artist is drawing on a sheet of
paper, but the drawing will be understood mathematically as having been drawn on a sphere. The one rule is
that all the lines must connect.

The drawing is completed. Now begins the rule-based, post-production process: add a black vertex at
each location where lines cross or end (Figure 2b.) We now have a graph; in fact, a graph drawing properly
embedded on the sphere. Since we are on a closed surface, the white space surrounding the drawing is also
a face. For example, in Figure 2b, the embedded graph has two faces: a 1-gon and a 3-gon. Insert a white
vertex (unfilled circle) in the middle of each graph edge (Figure 2c.) Importantly, this guarantees that each
face now has an even number of sides. At this point we have a proper vertex 2-coloring of a bipartite graph, a
bicolored graph. (A graph is said to be bipartite if it admits a proper 2-coloring of its vertices; in other words,
the vertices are able to be colored either black or white such that no edge joins vertices of the same color.) By
inserting a white vertex in the middle of each edge, we have converted a graph (that perhaps was not bipartite)
into one that is bipartite; and we have singled out one of its (only two) possible bicolorings. Such a bicolored,
embedded graph—when considered up to topological equivalence—is known as the Walsh representation of
a hypermap. ‘Hypermap’ is just another word for dessin: the drawing has become a dessin.2

Now we move toward basket weaving. Add a pink vertex in the middle of each face (Figure 2d,) and add
new edges connecting the pink vertex to the black and white vertices incident to that face, thereby creating a
mesh of topological triangles. Every vertex now has an even number of edges (i.e., we now have an Eulerian
graph) and therefore—triangles being easier to count—each vertex also has an even number of triangles
around it. In addition, we are in possession of a proper vertex 3-coloring for this Eulerian triangulation.
What we now have is known as the canonical triangulation of the dessin. We won’t actually put the following
colors on the edges, but we could hypothetically assign to each edge in the triangulation the color of the
opposite vertex (such color being the same on either side of the edge.) With that understanding: delete the
‘pink edges’ (i.e., delete the original artist-drawn edges.) We now have the canonical quadrangulation of the
dessin (Figure 2e) where every face is a quad, and every quad has a pair of opposite corners where one vertex

1The procedure works out just fine on higher topology orientable surfaces, but the drawing will need to divide the surface into
simply connected regions—a lot to ask of our young artist.

2Dessins are not limited to 2-valent white vertices—that is just a result of starting from an ordinary graph. More generally, one
finds a bipartite graph and chooses a bicoloring.
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is black and the other white, call these the polar colors. In the other pair of opposite corners both vertices
are pink, call pink the non-polar color.

Figure 3: Four classical representations of the same dessin. The Cori representation, which is dual to the
canonical quadrangulation, can be read as a basket weaving diagram. Imagine wire strands that

follow the boundaries between colors. They pass over and under in a way that gives the
color-coded weave openings the correct helical handedness: the polar colors (black and white)

code one handedness, the non-polar color (pink) codes the other.

The Canonical Quadrangulation Describes a Basket

If we choose to see the faces of the canonical quadranglation as indicative of the quadrangles of exposed strand
seen in densely-woven tabby weave, and the polar vertices (respectively, non-polar vertices) as indicative of
weave openings of right-handed (respectively, left-handed) helicity [4], then the vertex 3-colored canonical
quadrangulation already specifies a particular basket, one woven in a particular handedness. Easier for the
weaver to read and draw is the dual graph, the Cori representation (Figure 3), a 4-regular graph with a proper
face 2-coloring (i.e., polar versus non-polar color.) The Cori representation (sometimes referred to as the
medial or the ambo of the Walsh representation) is indicative of the appearance of sparse weaving (imagine
wires tracing the boundaries between colors.)

Figure 4: The paths of weaving strands can be found most easily by following a ‘refractive path’: crossing
obliquely over the middle of an edge and then steering for the next mid-edge.

I draw the medial of the Walsh representation (Figure 4) by following what I call ‘refractive paths’
around the dessin with colored pencils. The technique is to start out by crossing obliquely the middle of an
edge, and then steering toward the middle of the next edge. If the cycle closes before crossing every edge
of the graph twice, start a another cycle in a different color. For example, the graph in Figure 4 will need
one more cycle to double-cover all the edges. The medial graph quickly clarifies the important details of the
weave.
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Figure 5: The Adams ‘World in a Square II’ map tile (a), conformal except at its corners, can be tiled into a
seamless, doubly-periodic version of the Earth’s surface. Any bicolored map on an oriented

surface (b) shows a way to tile that surface with Adams tiles: each map edge gets its own tile;
black/white corners meet over map vertices of like color, pink corners meet over the center of

their respective map faces. Each black-to-white edge of the map corresponds to a south-to-north
traverse of the Prime Meridian on its tile. The tiles can be folded along their Prime Meridian,

and, as here, that is commonly necessary.

The Adams ‘World in a Square II’ map projection

In 1929, Oscar Sherman Adams, chief mathematician at the United States Coast and Geodetic Survey,
published a new map projection [1] (Figure 5a) dubbed World in a Square II. Adams’ projection has the
novel property that it tiles into a seamless, doubly-periodic version of the Earth’s surface. The projection is
conformal (i.e., the map distortion consists of local variations in scaling: small circles remain circles, angles
are preserved)—conformal everywhere except for the four corners3. That is to say, it is non-conformal at
just three locations on the planet: the South Pole, the North Pole, and the ‘Mid-Pacific Point’ where the
Equator crosses the Anti-Meridian (180°W.) In each tile, at opposing corners, are the North and South Poles;
at the other pair of opposing corners are two complementary copies of the Mid-Pacific Point (each copy
carries only half of the Mid-Pacific Point’s environs.) Sound familiar? Clearly the coloring of the canonical
quadrangulation tells us exactly how to place Adams tiles on a basket—we only need to fix a canonical
mapping of South/North to Black/White; the Mid-Pacific Point must map to Pink. Figure 5b shows a shortcut
from a bicolored graph drawing (as in Figure 2c) to a canonical quadrangulation already tiled.

Strobl’s Knotology Weaving

In the 1990’s Heinz Strobl [3] invented a new type of weaving (Figure 6) that he dubbed knotology. Knotology
reconciles the two fundamental ways to weave: tabby weave and kagome. The weaving elements that achieve
this alchemy are straight, standard-width, rectangular strips that are creased in an unvarying sequence of right
triangles. Remarkably, nearly 100 percent fabric coverage is achieved (the characteristic hexagonal ‘eyes’ of
the kagome weave are closed up.) Though knotology is limited to thin materials, like paper or sheet metal,
that can sustain a sharp bend, it achieves surprising versatility from its standard parts.

3The Adams tile manifestly does not preserve angles at its corners: the North and South corners have 360° represented in 90°,
and each of the Mid-Pacific corners has 180° represented in 90°.
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Figure 6: Knotology weaving: (a) a knotology weaving strip with color-coded corner matchings; (b) the
corner matchings needed after a weaving strip is decorated with Adams tiles; (c) three

interwoven knotology strips sharing a corner; (d) a metal sculpture in knotology.

Knotology weaving requires the corner matchings indicated in Figure 6a; by comparison, the corner
matchings required by a strip of Adams tiles are indicated in Figure 6b. What were uniformly gray corners
in knotology weaving, now alternate black/white in a strip of Adams tiles. Some of the symmetry and
versatility of knotology is sacrificed when the weaving strands are decorated with Adams tiles; in particular,
the diagonal folds—the Prime Meridians—must trace a bipartite graph. Notice that the diagonal folds of the
knotology strand must coincide with the Prime Meridian on the tiles if we hope to be able to weave a basket
that wears a single copy of the Earth, since that is the only place where “World in a Square II” can fold to
properly pair up its edges.

Instructions for the Preliminary Exercise

At this point I believe you will not find it difficult to follow the instructions in the next section to make the
model in Figure 1; however, it may be advisable to start with something more minimal and more representative
of what you will encounter if you start from an arbitrary drawing. For this exercise you will need to print
a copy of Figure 7 and cut out three geoweaving strands, then follow the folding instructions in the first
paragraph of the next section. For the exercise we will weave the basket in Figure 5b. It can be clarifying
to make a model of a surface before attempting to weave it. Figure 5b indicates that we will need four tiles
to make a model of the surface. (In cutting geoweaving strands to length, notice that there are two different
places where a cut can be made: cuts are either southern or northern according to whether they cut along
the southern or northern portion of the Anti-Meridian—think ahead if there is a particular place where you
want the cut and splice to lie.) Cut a strand four tiles long starting from a southern cut. We will be working
left-to-right from the 1-valent black vertex on the left of the Figure 5b (recall that Black = South Pole; White
= North Pole; Pink = Mid-Pacific). Form the Black-White-Black vertex sequence by folding two successive
tiles along Prime Meridians. These two folds form a shape like a square envelope cut off along its diagonal
(Figure 8a.) The last two tiles in the strip fold back along an Anti-Meridian to form a 2-valent Pink vertex
encircled by two Prime Meridians. Double check that the valences and connectivity of all the vertices agree
with the figure, and then use clear tape to close up the seams (Figure 8b.)

It helps to trace the paths of the weavers on the model by wrapping it with masking tape (Figure 8c.)
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Figure 7: Geoweaving strands for the model. (Fold lines are indicated only at the edges.)
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You should find that you need one 6-tile strand and one 2-tile strand to do the weaving (just as predicted
in Figure 4.) Because weaving needs some maneuvering room, trim the light-colored margins off the two
remaining strands that you folded for this exercise. It is best to start weaving at an intersection to give a clear
reference point for the over-and-under rhythm. Cut a two-tile strip, and splice it into a loop with clear tape.
Refer to your model to see how you want the map of the globe to be oriented where the two loops cross. The
longer loop is six tiles long so it does not need cutting to length. Slide the two-tile loop over the six-tile strip
to a position where the globe orientations agree with each other and the crossing in the model. Starting from
there, fold the 6-tile loop to mimic the model while maintaining an under-and-over rhythm. The end of this
strip will land next to where it started, allowing it to be spliced with a piece of tape.

Figure 8: Steps in the preliminary exercise.

Instructions for Weaving the Model

Print and cut out the four geoweaving strands in Figure 5. (Ignore the shading when you cut; the unshaded
portions will be trimmed off later.) Fully crease along the transverse folds suggested by the markings on the
edges. Then fully crease along the diagonal folds suggested by the markings on the edges. Reverse all the
folds completely (i.e., mountain folds become valley folds) so that the hinges are fully broken in. At the end
you will want each strand to be an accordion-folded stack with the diagonal folds appearing as mountain folds
when seen from the printed side.

Figure 9: Assembly steps for the model.

Stretch out the strands and trim off the light-shaded margins that bear the fold indications. Narrowing
the strands in this way loosens the weaving enough to accommodate the basket’s conformation changes. The
strands are of two types, but you can approach the first crossing as just an easy jigsaw puzzle. Find the
center fold of each strand; it has a portion of the Mid-Pacific. Put together a smooth, 2-period copy of the
Mid-Pacific, by assembling those four pieces. Put the four strands in a proper over-and-under weave (Figure
6a.) Hold the assembly together while you flip it over to the unprinted side. Tease the assembly back into
proper order, making the diagonal creases coincide, above and below. There will be an open square in the
center due to the trimming. When everything is aligned, cut a piece of removable tape about 2 cm square;
double one of its corners back onto itself to make it easier to remove; adhere it to your skin and peel it off a
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few times making it easier to remove from paper without damage. Place this square of tape over the central
hole to temporarily keep the weaving together (Figure 6b.) Flip the work over. You will see a diamond shape
delineated by four diagonal folds, with a ‘V’ of strands coming from each of the four edges. Fold the ‘V’s
downward so that the diamond shape of the bottom is clearly expressed (Figure 6c.) You can now weave each
side of the box in turn: involved are the ‘V’ and a strand each from the neighboring sides. The over-and-under
rule is now your friend, showing you the way. As each side of the basket is completed, fold back along
the diagonal folds that delimit the top of the side, exposing the white underside of of a pair strands. These
folded-back strands can now be secured at the top with a paper clip (Figure 6d.) When all four sides are
clipped, it is time to peel that piece of removable tape off the bottom. The closure at the top of the basket
requires splicing strand ends together with transparent tape like old-time audio editing. Start by removing
two clips that share a corner. It will be obvious which pair of strand-ends want to mate up. Place a short
length of transparent tape over one strand end, then position the other under the tape. The tape can overhang
the sides of the splice because it will be easy to trim it perfectly flush with scissors once the splice is made.
Work around the cube in the direction that lets you work without threading strands underneath (Figure 6e.)
By the time you reach the last splice, the basket will be robust enough that you can reach in with your fingers
and grab the strand that needs to come up from underneath.

The first change of conformation is the hardest. The mechanism is to fold both top and bottom inward
hinging along face diagonals of the cube, each perpendicular to the other. You may want to practice this
move in advance when the sides are clipped and the top of the basket is still open.

Summary and Conclusions

I have shown that the popular topic of dessins d’enfants applies directly to the weaving of baskets, endowing
such baskets, in some measure, with the wonderful properties of Riemann surfaces. I hope this can lead to
some interesting learning by playing.
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