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Abstract

This paper describes a process for applying Islamic geometric patterns (IGP) to the faces of polar zonohedra (PZ).
First, a process for developing IGP that repeat on rhombic grids is presented. Then, PZ are defined and the formula
for calculating the rhombic face angles is shown. Since the set of face angles for a given PZ is almost never identical
to those of the rhombic grids for IGP, a system is presented for systematically identifying PZ and IGP whose rhombic
angles are within a given threshold. IGP can then be applied to the faces of the identified PZ using small linear
scaling factors — making distortions practically unnoticeable to the naked eye.

Background and Motivation

Having spent many years decorating polyhedra (primarily Platonic and Archimedean solids) with Islamic
geometric patterns (IGP), I became interested in whether they could also be applied to polar zonohedra (PZ).
As Figures 1 and 9 show, I discovered that it is, in fact, possible. However, PZ must be chosen according to
a fairly strict set of criteria in order for the final pattern to appear undistorted and aesthetically pleasing.

Figure 1: A series of PZ(3, θ) fitting various IGPR(N), with N ∈ {6,8,10,12,14,16} (left to right).

Introduction to Islamic Geometric Patterns

The field of IGP is a vast one, and many Bridges papers by myself [7] and other authors [2, 3, 6] have
explored ways of extending this tradition in new directions beyond the designs found in the historical record.
Traditional IGP generally repeat in the plane, as an expression of the infinite. All of the familiar planar repeat
units such as squares, rectangles, triangles, and hexagons appear regularly. Another common repeat unit is
the rhombus, and many successful traditional patterns follow this repeat scheme as well [1]. In particular,
there is a systematic way to develop IGP whose primary motifs have N-fold symmetry, and whose repeat
units are rhombi with angles of the form i(360/N)◦ where i is a positive integer.
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Creating N-fold IGP with Rhombic Repeat Units

Consider a rhombus whose angles are a(360/N)◦ and b(360/N)◦ for positive integers a, b, and N , with a ≤ b.
Since the angles sum to 180◦, we have a(360/N)+ b(360/N) = 180, so (2a+2b) = N . Thus N must be even,
and a + b = N/2. Setting a = b = 1 yields N = 4, i.e. a square, which is not of interest for this investigation.
Also, developing reasonable IGP, especially on the thinnest rhombi (a = 1) becomes increasingly challenging
as N increases. Thus, I will be considering rhombic repeat units where N is even and 6 ≤ N ≤ 16. For each
such N there are bN/4c distinct pairs (a, b). Henceforth a set of edge-matched IGP for all rhombic repeat
units for a given N will be called IGPR(N). Figure 2 shows examples of IGPR(N) for 6 ≤ N ≤ 16.

Figure 2: Examples of IGPR(N) for N ∈ {6,8,10,12,14,16}.

Figure 3 illustrates the steps for developing IGPR(N), using N = 10 as an example. First, we create all
possible rhombi with acute angles a(360/N),1 ≤ a ≤ bN/4c and place centers of N-fold symmetry at the
vertices. Then, using well documented techniques [1, 5] we develop a polygonal subgrid for each rhombus.
Note that for small a, it is common practice to allow the N-fold polygons at the obtuse vertices to overlap
and merge in the center of the rhombus. One important additional constraint is that we must find subgrids
for all rhombi in the family that have the same configuration along every edge (hence “edge-matched” in
the definition above). This will assure that rhombi of different shapes can still match edge to edge across
the entire range of faces in a given PZ. Once all subgrids have been created, we place pairs of lines at each
midpoint, crossing at a consistent contact angle, and extend those lines to complete the pattern. As with all
IGP, there are often multiple possible subgrids, as well as multiple families of patterns on a given subgrid
depending on the choice of contact angle (acute, median, obtuse, and/or two-point, per Bonner’s terminology
[1]) that can be developed on a given subgrid; only one example pattern for each N is shown here.
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Figure 3: Developing patterns for IGPR(10): (a) Place 10-fold symmetry lines at each vertex; (b) Create
polygonal subgrid; (c) Place contact angles at polygon edge midpoints; (d) Complete patterns.

Introduction to Polar Zonohedra

Polar zonohedra (PZ) are an especially beautiful, rotationally symmetric class of polyhedra all of whose faces
are rhombi with the same edge lengths. It is easiest to picture a PZ as emanating from the origin with a
P-fold axis of symmetry in the z direction. Each PZ(P, θ) is defined entirely by P, the number of equal length
generating vectors (spaced at angles of (360/P)◦ around the z axis), and θ, the “pitch angle” of those vectors
relative to the xy plane. When θ is close to 0◦, the PZ will have a very flat, pancake-like shape; when θ is close
to 90◦, it will have a very pointy, cigar-like shape; and in between it will have a shape reminiscent of a football
(see Figure 4). Hart [4] enumerates many other interesting properties of this class of shapes, and derives the
following formula for the bottommost rhombic face angle at the j th level (with j = 0 being the “bottom” set
of faces with vertices at the origin): Anglej of PZ(P, θ) = ArcCos[Cos(360 j/P)Cos2(θ) + Sin2(θ)].

Figure 4: Examples of polar zonohedra PZ(P, θ) for a variety of values of P and θ

Comparing Rhombic Angles of IGP and PZ

When attempting to apply IGP arbitrarily to the faces of PZ, the results are usually aesthetically unsuccessful
(see Figure 5). On the left, an 8-fold IGP has been applied to an arbitrary PZ (turned sideways here for greater
detail), and distortions are very clear. At the tips, the green “shield” shapes are contorted into three very
different aspect ratios; in the center, the square configurations are noticeably stretched; and some transitions
between faces do not even preserve straight pattern lines across their boundaries (e.g. the left side of the blue
figure just left of center). Conversely, on the right, a PZ discovered through the process described later in this
paper accommodates the same IGP with minimal distortion and hence a much more satisfying effect.
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Figure 5: An 8-fold IGP applied to an arbitrary PZ (left) vs. a carefully selected PZ (right).

The reason aribtrary matches rarely work well is that there are only a few special cases where the
set of face angles of a given PZ(P, θ) are exactly in the form i(360/N)◦ required by the repeat units of
IGP(i,N). One is the degenerate case of PZ(P,0) (for any P). In this case all of the faces are of exactly
the form i(360/N)◦; however, the PZ is completely flat and has no volume. Another is the unique case of
PZ(3, Arctan(1/

√
2)), which produces a perfect cube, and so admits any IGP based on a square repeat unit.

Cubes decorated with IGP are very beautiful, but don’t capture the special essence of PZ.
So at first the task of decorating a typical, football-shaped PZ would seem nearly impossible. However,

in relatively rare circumstances, it turns out that all of the face angles of a given PZ fall within a small number
of degrees of some set of angles i(360/N)◦. Once such a PZ is identified, it becomes possible to apply a set
of patterns IGPR(N) to its faces, by using small linear scalings of the pattern to match the angles of pattern’s
repeat units to the angles of each PZ face. So, how does one go about identifying such PZ?

Graphing PZ Face Angles

We begin by getting a feel for how PZ face angles vary as θ moves from 0◦ to 90◦. Figure 6 shows four
examples for PZ with P = 5, 5, 7, and 14 (for the moment ignore the shaded areas and vertical lines and
ovals; we’ll discuss these shortly). One immediately gets a visual sense of how the face angles vary as the
PZ moves from the “pancake” shape near θ = 0◦ to the “cigar shape” near θ = 90◦:

• Note that we only need to inspect the angles for the bottom half of the PZ (i.e., the first bP/2c angles),
since the upper half is just a reflection of the bottom half.

• At θ = 0◦, the PZ is completely flat, and so the face angles are simply 360i/N◦ and hence evenly spaced
along the vertical axis. This is the degenerate case mentioned earlier.

• At θ = 90◦, the PZ collapses to a vertical line, so all the face angles drop to 0◦.
• In between, angles decrease along a series of curves (or a straight line for the top curve for even P) per
the function listed above (Anglej of PZ(P, θ) = ArcCos[Cos(360 j/P)Cos2(θ) + Sin2(θ)]).

Identifying Potential IGP-PZ Matches

Now that we have PZ face angles graphed, we can see how they relate to the angles for a given IGPR(N)
(Figure 6, dashed blue horizontal lines), and look for values of the pitch angle θ where the two sets of curves
intersect or pass close enough to each other that a match seems feasible (Figure 6, vertical lines and ovals).
In the upper left we see a near match at θ = 44◦ (the maximum discrepancy was 5.04◦, which just missed
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Figure 6: Graphs of PZ face angles varying with θ for various values of P. Also shown are IGP rhombus
angles i(360/N)◦ (dashed horizontal lines) and close matches (red vertical lines and ovals). The
upper left graph also shows a near match (blue vertical lines and ovals), areas of closest match
(gray shaded areas), and “zones of influence” for maximum differences (red shaded areas).

the threshold of 5◦); in the upper right, 3 matches at θ = 37◦,47◦, and 65◦, and so on. Note that not all IGP
angles must be used in matching because (a) pairs of values that sum to 180◦ are already redundant, since
they represent the same rhombus rotated by 90◦, and (b) we need not use every rhombus in the given IGPR(N)
set. Conversely, we DO need to find decent matches for all PZ face angles, since each one represents a
distinct face type of the given PZ. A few additional points of interest from Figure 6:

• The same P has different matching behavior w.r.t. different N (compare upper left and upper right).
• Larger P mean more angles to match, so there are on average fewer matches (compare last 3 graphs).
• Two PZ face angles can match the same IGP angle from above and below (lower right, top oval).
• The maximum difference shifts constantly as θ increases. In the upper left, gray shaded areas show
where each curve is closest to an N line, and red areas show where the maximum difference lies.

An Exhaustive Search for Candidates

Rather than generate and inspect every pair of PZ curves and IGP lines, we can at this point create a function
that returns for each triple (P, θ,N) the maximum deviation between the set of face angles for PZ(P, θ) and
each angle’s closest-matching IGP angle (360/N◦). We can tabulate these results and start looking for values
below a given threshold (say, ≤ 5◦) where we might be able to scale the IGP without noticeable deformation.
I implemented this in Excel with a few simple VBA functions, and Figure 7 shows an example of the data for
6 ≤ N ≤ 16, 0◦ ≤ θ ≤ 90◦, and P ∈ {3,5,7,14}. Several interesting patterns emerge in Figure 7:

• The apparently random up and down patterns are due to shifting “zones of influence” – that is, which of
the PZ angles is driving the maximum difference for any given range of θ. Examine the red highlighted
zones of influence in Figure 6 (upper left) to see how they dictate the contour of the chart for N = 8
(Figure 7, upper right, second curve from the top, in orange).
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Figure 7: Maximum discrepancies between PZ angles and IGP angles for N ∈ {6,8,10,12,14,16} and
P ∈ {3,5,7,14}. Shaded areas show ideal range of θ, and dashed lines show match threshold (5◦).

• For all P, the maximum is eventually driven by the smallest PZ angle and smallest IGP angle, and at
that point it grows steadily to 360/N◦ (see the rightmost side of each series).

• Drawing a horizontal line at our threshold level (dashed red horizontal line near the bottom of each
chart) makes it easy to locate places where various maxima drop below the threshold.

• The higher the value of P, the less likely an overall match becomes, since there are progressively more
(bP/2c) different angles to match. At P = 3 there is only one angle to match (these PZ are equilateral
parallelepipeds with 6 congruent faces), so many exact matches exist where graphs graze the x axis;
P = 5 and P = 7 show ever fewer matches; and by P = 14 there is but one match for a single N .

One final criterion is more aesthetic and practical than mathematical. Recall that extreme values of θ
near 0◦ and 90◦ lead to very “flat” and “pointy” shapes, respectively. At an aesthetic level, I find these shapes
less beautiful, and at a practical level, constructing IGP on extremely thin rhombi often does not lead to good
results. Thus, I restricted my final tally to the range 20◦ ≤ θ ≤ 70◦ (green shaded areas in Figure 7).

Using the final set of criteria (6 ≤ N ≤ 16, 3 ≤ P ≤ 15, 20◦ ≤ θ ≤ 70◦), and a maximum difference
threshold of 5◦, a total of 43 final candidates were found (see supplemental spreadsheet). As expected,
candidates decrease as P increases, since there are more simultaneous PZ face angles to match. The case of
P = 3, which has only one face angle to match, can fit any pattern (see Figure 1). Also, larger values of N
are easier to match because they provide a larger set of rhombic repeat shapes.

Making IGP conform to PZ Faces

Lastly, we need a way to adapt the patterns in IGPR(N) before we can apply them to the faces of the matched
PZ(P, θ). This is a simple matter of scaling along one axis to make the pattern match the PZ face in question
(see Figure 8).

We now have all the tools we need to decorate PZ with IGP, and fulfill the title of the paper! Several
decorated PZ renderings are shown in Figures 1 and 9. Each IGPR(N) has been given its own color scheme
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Figure 8: Scaling IGPR(N) to fit faces from PZ(5,54◦). Original rhombi have acute angles of 36◦ and 72◦;
acute face angles are ∼ 40.42◦ (requiring widening) and ∼ 67.98◦ (requiring narrowing).

to help identify it across multiple PZ; the color schemes are mostly reminiscent of those used in traditional
patterns, though the IGPR(16) pattern is less so. Figure 1 shows the flexibility inherent in PZ with P = 3.
With only one shape of rhombic face, one can vary the pitch angle θ such that any desired acute face angle is
achieved, and thus any IGP can be made to fit smoothly. Figure 9 demonstrates a cross section of possibilities
covering many values of P and all values of N that were considered.

Conclusion and Future Directions

By systematically comparing sets of PZ face angles with sets of IGP rhombic repeat angles, we can identify
IGP that can be linearly scaled to fit the faces of certain PZ. As Figure 9 shows, there is a large variety of
possibilities. So far I have only produced 3D renderings, but I plan to create physical models in the near
future. Given how good matches at a threshold of 5◦ appear, I plan to see if wider thresholds can still yield
patterns without noticeable deformation. I also plan to develop IGPR(N) for larger N (e.g. 18, 20, 22 ...).
This may be especially fruitful given that the number of viable PZ candidates increases as N increases.
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Figure 9: Polar zonohedra selected from the 43 final candidates fulfilling all criteria listed previously.
Each is labeled with its underlying shape PZ(P, θ) and its pattern IGPR(N).
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