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Abstract
This article investigates ways to trace out the path around three intersecting circles. This is a study of symmetry and
combinatorics.

Euler cycles and Celtic knots

Our starting point is the three circles motif, a fundamental symbol, for example, as a simple Venn diagram,
or in combining colours.

Can you trace out the three circles, on the left in Figure 1, without your pen leaving the paper, drawing
along each arc only once? This is an Euler cycle, passing through every edge of a graph exactly once [6,
§4.4]. The second picture in Figure 1 shows one way. Pull the paths apart a little, to see more clearly what’s
going on, as in the third diagram of Figure 1. It turns out there are 75 Euler cycles, up to rotations and
reflections. If you are allowed to take the pen off the paper, making the path consist of a union of cycles,
covering each edge only once, there are 165 ways. These arcs are in bijective correspondence with the edges
of an octahedron, so finding an Euler cycle equates to finding an Euler cycle for an octahedron. For the
octahdron, up to rotational and reflectional symmetries, there are just 38 ways, as shown in Figure 7.

This study began with form drawing [1]. In particular drawing variations of the triquestra symbol also
known as the trinity knot [3] and trefoil knot. This knot appears in the center of the leftmost diagram in
Figure 3. The three exterior arcs added to this figure lead to the three-circle pattern. This study exhaustively
enumerates all other possible configurations obtained from these three circles.

Counting paths

The basic configuration of a path can be specified by what happens at each “vertex” – point of interesection
of the circles – go left, right, straight ahead. Since “left” and “right” are ambigous, I label the vertices
type “o”, “g” or “p”, as in Figure 1. I am discussing classes of patterns – the string c1c2c3c4c5c6, where
ci ∈ {o, p, g}, determines the class of the pattern, i.e., vi has crossing type ci. The right half of Figure 3
shows 3 figures, all of which have type goppgg. Since each vertex has 3 possible cases, and there are 6

v1 v2 v3

v4 v5

v6

Figure 1: First three figures show tracing out three circles. Where the circles cross is a vertex,
vi, i = 1, . . . 6. At vertices, the direction of the path may change. There are three cases, as in the

figures on the right, which have type “o”, “g” and “p” respectively
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Figure 2: Configurations poggpg, gpgogp, ggppog, goppgg, pggopg, gpggop are all the same up to D3
symmetries of rotation and reflection

p3p2
p1

Figure 3: Celtic knot variation shown left. Generally, paths must lie on circles, centered p1, p2 or p3, as in
the second figure, and not overlap. The third is a “badly drawn” type goppgg configuration; the

remaining three figures are “good” representations of the goppgg configuration.

vertices, there are a total of 36 = 729 cases. However, many will be the same after rotation or reflection. To
count the configurations up to symmetry, assosicate each configuration with a number: For each 6-tuple of
the letters o, g, p, replace by g → 0, p→ 1, o→ 2, and read in base 3. Find this number for each rotation and
reflection, and choose the configuration with the least number as representative A Python program computed
there are 165 cases, 75 being Euler cycles. The number of cases up to symmetry can also be computed
using Burnside’s Lemma. [4], [5], which says that for a group G acting on a set X , the number of orbits of
the action is |X/G | = 1

|G |

∑
g∈G |Xg |, where Xg = set of elements of X unchanged by g ∈ G. In our case,

G = D3 = {1, r, r2, f1, f2, f3}, the dihedral group of symmetries of a regular triangle, where fi are reflections
and r is a rotation. An example of an orbit is given in Figure 2. Rotations fix 32 elements, with configurations
of the form c1c2c1c2c2c1, and reflections fix 34 elements, for example c1c2c1c4c4c6 for the reflections in the
vertical axis. Substitution in the formula gives that the total number of configutations is 165

Drawing the configurations

Where possible, I wanted to draw representative cases satisfying the following rules:

• All arcs must lie on circles, with centers at a choice from three points, p1, p2, p3 as in Figure 3
• Arcs that are not joined must not overlap, as in Figure 3

Specifying the radii of the arcs between pairs of joined vertices almost completely determines what happens
at a vertex, as for example in Figure 4. In this example, the circles have centers distance 1 apart, and the arc
from vertex vi to vj has radius 1 + 1

4εi j . These are given in a symmetric matrix. How the arc radii determine
vertex type is given in an example in Table 1. A python program worked through the possible cases.

Up to D3 symmetry, 8 cases can not be drawn according to these rules. Up to octahedral symmetry,
these are the cases in row, column, 2, 6 and 4, 1 in Figure 7.

Figure 5 illustrates the relationship between the three circles configuration and the octahedron. Imagine
the figure on a sphere. The seven finite regions are stretched round the sphere, and then straightened to obtain
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• Underlying circles radius R = 2. Arc from vi to vj has radius R + αεi j , where α = 0.5.
• E.g., as in this matrix, E = (εi j) − means vi and vj are not joined.

from v1 v2 v3 v4 v5 v6
to v1 − 0 0 1 − 0
v2 0 − 0 1 1 −

v3 0 0 − − 1 0
v4 1 1 − − 0 0
v5 − 1 1 0 − 1
v6 0 − 0 0 1 −

E → pgpgpp

Figure 4: In most cases, the arcs radii determine vertex type.

Table 1: How ε2j determines the vertex type of v2.

E2, = (0,−, 0, 0, 0,−) −→ o

v2

v1 ← → v3

↙ v4 ↘ v5
v2v2

E2, = (1,−, 1,−1,−1,−) −→ p

v2 v2

v2 ε2,1 < ε2,5 ε2,1 = ε2,5 ε2,1 > ε2,5
ε2,3 < ε2,4

ε2,3 = ε2,4

ε2,3 > ε2,4

the octahedron. The exterior area of the initial face becomes the 8th face of the octahdron. To go from the
octahrdon back to the circle figure, we have eight choices of which face will become the exterior region.
The group of octahedral symmetries has order 48, so a typical configuration has orbit size 48. For example,
Figure 6 shows 8 elements of the same octahedral orbit, obtained from the path in the figure on the right in
Figure 5. These correspond to the 8 faces of the octaherdon. The other elements are obtained by applying the
D3 symmetries. All cases up to octahedral symmetry are shown in Figure 7, created with a python program
writing tikzpicture output. These figures, similar at first glance, are all different; the beauty is in having a
complete set up to octahedral symmetry, interesting to compare and contrast. They have been arranged in an
ordering of number of components and number of crossings. The count can also be verified by Burnside’s
lemma, bearing in mind that the non tetrahedral symmetries in the octahedral group will exchange ‘p’ and
‘g’ type vertices, so the count is not the same as the number of inequivalent vertex colourings.

These methods can be applied to other designs, as for example for 4 circles, as shown in Figure 8, where
I have also modified ’p’, ’g’ type vertices.

Figure 5: Transformation from the circle configuration to an octahedron
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Figure 6: 8 of the 48 elements in the octahedral orbit of the pogggg configuration.

;

Figure 7: Complete set of representative paths around the three circles up to octahedral symmetry.
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Figure 8: Variations on four circle configurations.
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