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Abstract
This article presents virtual reality software designed to explore the Sol geometry. The simulation is available on
3-dimensional.space/sol.html

Figure 1: Intrinsic view of a Sol manifold built as a torus bundle over the circle with Anosov monodromy.

Geometrization (conjectured byThurston, proved byPerleman) states that every closed three-dimensional
manifold can be decomposed into elementary “building blocks” each of which is modeled onto a specific ge-
ometry. There are eight such models: R3, S3,H3,H2×R, S2×R, Nil, Sol, and the universal cover of SL(2,R).
We developed virtual reality software whose aim is to simulate these eight geometries. We populate each
of these metric spaces X with various objects (spheres, planes, cylinders, lights, lattices, etc.) and compute
what an observer would see if light follows the geodesics of X . Using a virtual reality headset, the user can
walk in these spaces and experience their surprising properties. This paper presents an expository account
of Sol geometry, and stems from a larger project to develop accurate, real time, intrinsic, and mathematically
useful illustrations of homogeneous (pseudo)-riemannian spaces.

Sol Geometry

Definition and metric. There are various ways to describe Sol geometry. Let us give one that we will call
the extrinsic model. It is a Lie group X whose underlying space is R3 with the group law given by

(x1, y1, z1) ∗ (x2, y2, z2) = (ez1 x2 + x1, e−z1 y2 + y1, z1 + z2)
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The identity element is the point o = (0,0,0) which we choose as the origin of the space. Algebraically it is
an extension of R2 by R, and is therefore a solvable group, hence the name of the geometry. The space X is
endowed with a riemannian metric. The metric tensor at an arbitrary point p = (x, y, z) is given by

ds2 = e−2zdx2 + e2zdy2 + dz2 [12, Section 1.7]

With this metric, the action of X on itself is an action by isometries. In contrast to other geometries for
which the underlying space is a group, X has only finitely many more symmetries. These correspond to the
stabilizer of the origin; it acts by a collection of rotations and reflections preserving the union of the x- and
y-axes.

Geodesic flow. In order to compute the trajectory of the light rays in Sol, we need a parametrization of its
geodesics. Using standard tools of riemannian geometry, one can prove that any curve c : [0,1] → X is a
geodesic if and only if c(t) = (x(t), y(t), z(t)) satisfies the following differential equations

Üx = 2 Ûx Ûz
Üy = −2 Ûy Ûz
Üz = −e−2z Ûx2 + e−2z Ûy2

This system can be explicitly solved using Jacobi’s elliptic functions and Jacobi’s zeta function [12]. Never-
theless the explicit formulas are not particularly enlightening. Instead, in the next sections we explore a few
interesting features of the Sol geometry.

Figure 2: Geodesics (for the Sol metric) starting at the origin in the extrinsic model.

Shape of the Spheres. Spheres in Sol are quite surprising [2]. To interpret their shapes one needs to keep
the following observation in mind. Let p = (x, y, z) be a point in X , with z > 0 and c : [0,1] → R a geodesic
from the origin o to p. Assume that one wants to extend the path c to move further away from o. Increasing
the x-coordinate by ε will move us by a distance of e−zε (in the Sol metric). On the other hand, increasing by
ε the y-coordinate will move us by a much larger distance, namely ezε . Hence the upper part of the sphere
(for z > 0) has a tendency to stretch along the y-axis, see Figure 3. The spheres exhibit the D8-symmetry
(where D8 is the dihedral group of order 8 and the stabilizer of the origin). Hence the lower part of the sphere
is stretched along the x-axis.

Exploration through Virtual Reality

So far, we have reviewed the geometry of Sol extrinsically, e.g. by referencing a model (R3, ds2). We now
explain what an observer living in a “Sol world” would see (the intrinsic point of view). To see in Sol, we
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Figure 3: 3D printed models of geodesic spheres in Sol in the extrinsic model. These models were a helpful
tool to interpret the simulations described below. Photo: © Edmund Harris

imagine our retina (or camera) as a small screen in the tangent space, and the image we see on the screen is
given by tracing out along geodesics into the world, until they hit an object.

Hyperbolic foliation and horizontal planes. The Sol geometry has several remarkable two-dimensional
subspaces. Given c ∈ R, the planes {x = c} and {y = c} are totally geodesic subspaces of Sol, which are
isometric to the standard hyperbolic plane H2. On the other hand, each plane {z = c} is endowed with a
distorted euclidean metric whose unit circle is an ellipse. However it is not totally geodesic. More precisely,
the only geodesics contained in the plane {z = 0} are γ+(t) = (t, t,0) and γ−(t) = (t,−t,0). This leads to some
puzzling features.

Imagine that an observer stands in a hot-air balloon looking straight downwards (along the −z-axis) at
the ground (the xy-plane). As the balloon rises up, the plane appears as though it is “rolled into a tube”
instead of extending infinitely far in all directions. See Figure 4 (in the simulation, the plane has been tiled
by small circles to give a sense of scale).

Figure 4: Walking away from the xy-plane in Sol along the z-axis at varying distances
(Watch https://vimeo.com/386630294).

Recall that as we are tracing our lines of sight along Sol geodesics, black points in the image correspond
to directions for which the associated geodesics never reach the xy-plane! Figure 5 shows a cluster of
geodesics starting above the xy-plane. Their tangent vectors all point downwards close to the z-axis. Some
of them, make a “u-turn” and head away in the other direction. Those rays correspond to the dark area in
the intrinsic view. Another curious feature appears if the observer, still located above the xy-plane, looks
through the holes of the circular tilling of the xy-plane. It seems that there is something behind the plane, see
Figure 6. Indeed, as shown on Figure 5, some of the geodesic rays pointing downwards first hit the xy-plane,
make a “u-turn”, then hit the xy-plane again. Thus, the light gray balls pictured in Figure 6 correspond to
the back side of the xy-plane. Imagine now that that the observer flies downwards through the xy-plane. If
their z-coordinate becomes negative, i.e. if the xy-plane is behind them, they will see the back side of the
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Figure 5: A cluster of geodesics whose tangent vectors at time 0 have negative dot product with (0,0,1) in
the extrinsic model. Green rays hit the plane, red rays do not.

xy-plane in front of them! See Figure 6c. This is caused again by the tendency of some geodesics to make a
“u-turn”.

For more confusing pictures, imagine that the observer stands at the origin o = (0,0,0) “sandwiched”
between two planes {z = −1} and {z = 1}. The foreground plane appears as a rolled up tube, while the
plane behind takes up a large fraction of the observer’s forward-looking field of view, as above in Figure 6c.
Moving around between these planes offers a variety of interesting perspectives, see Figure 7. In particular,
when oriented the correct way, the foreground plane (the light one on Figures 7b and 7c) may obscure the
‘vanishing line’ (which is visible as a vertical line in the middle of Figure 7a) of the background plane, giving
the illusion that it is actually toroidal in shape.

(a) (b) (c)

Figure 6: Walking forward through a plane in Sol. (a) About to pass through the plane. (b) Passing
through the plane, the backside is visible through the hole. (c) After passing through, the

backside of the plane still appears "in front". (Watch https://vimeo.com/388598239)

Inside Compact Sol Manifolds

The Lie group X admits several uniform lattices. A uniform lattice is a discrete subgroup Γ ⊂ X whose
corresponding quotient M = Γ \ X is compact. An example of such a lattice is the subgroup Γ generated by

γ1 = (φ,−1,0) γ2 = (1, φ,0) and γ3 = (0,0,2 ln φ) , where φ =
1 +
√

5
2

is the golden ratio.
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(a) (b) (c)

Figure 7: Confusing views when sandwiched between two planes in Sol. (a) Plane z = −1 behind your head
is visible in front of you, when you are standing at the origin and looking above. (b) Drawing

both the plane z = −1 behind you and the plane z = 1 ahead of you. (c) A new perspective on the
two planes. (Watch https://vimeo.com/388610245)

Figure 8: The effect of an Anosov map on
the torus.

The corresponding manifold M is an example of one of
the building blocks arising in Thurston’s geometrization. It
has another interpretation, as follows. Consider the matrix

A =
(

2 1
1 1

)
. (1)

The action of A on R2 preserves the integer points, i.e.
Z2 ⊂ R2. Hence A induces a homemorphism f of the two-
dimensional torus T (more precisely an Anosov homemor-
phism) see Figure 8. The mapping torus of T by f , denoted
by Tf , is the quotient of T × [0,1] by the equivalence relation
which identifies each point (x,1) with ( f (x),0). We claim that Tf is homeomorphic to M .

(a) (b) (c)

Figure 9: A lattice in Sol. (a) Looking in the z direction (mapping torus direction). (b) Looking in direction
of x axis in Sol, and (c) the direction x = y. (Watch https://vimeo.com/388610289)

Let us give a glimpse of this identification. The action of A on R2 stretches/compresses the plane in the
direction of its eigenvectors. Identifying these with the x- and y-axes in Sol shows the tori T × {c} ⊂ Tf to
be the quotients of horizontal planes by the translations below

g1 : (x, y) 7→ (x + φ, y − 1), g2 : (x, y) 7→ (x + 1, y + φ). (2)

These translations correspond to the elements γ1 and γ2 given above. By construction, the matrix A is
diagonal in the (x, y) coordinates. Hence the map f sends (x, y) to (φ2x, φ−2y) which corresponds to the
action of γ3.
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(a) (b) (c)

Figure 10: Inside the Sol manifold with fundamental group described above. (a) Looking in the z direction.
(b) Looking in direction of x axis in Sol, and (c) the direction x = y.

(Watch https://vimeo.com/386628225)

We may use our technique – rendering images by tracing light rays outward from each pixel along
geodesics – to visualize the interior of M . Nevertheless, since M is compact, any light ray “wraps around”
the space many times. Consequently an inhabitant of M could see infinitely many copies of the same object.
Figure 9 shows several inner views of M , which we populated with a single ball. Equivalently, it can be
understood as a view of Sol where we positioned a ball at every lattice point γo, for γ ∈ Γ.

Figure 10 shows another point of view of the lattice Γ. We join by a “pillar/beam” any two points x, x ′

in Γo ⊂ X such that x ′ = γix for some i ∈ {1,2,3}. These pillars stake out a fundamental domain of the
action of Γ on X and its translates. Alternatively the picture can be interpreted as follows. Let xo be the
image in M of the origin o of X . The lattice Γ is also the fundamental group of the quotient M . In particular,
each γi is represented by a simple closed curve ci based at xo. Figure 10 shows what an observer living in M
sees if we thicken the curves ci into tubes.

Implementation Details

We built our virtual reality Sol-simulator by adapting the technique of ray-marching to non-euclidean
homogeneous spaces. This differs from previous work of the authors [5, 6] which computes intrinsic views
by pulling objects back to the tangent space via partial inverses of the riemannian exponential map. Such a
method cannot easily be applied for Sol, as the exponential map is far from being one-to-one. In contrast,
ray-marching, much like ray-tracing, works by flowing outwards from the screen along geodesics into the
scene, and upon intersecting an object computing the color of the relevant pixel using material properties of
that object, and the location / direction of light sources. The precise implementation details are the subject of
a forthcoming paper, and the code (currently a work in progress) is available on GitHub [3]. Other simulations
of Sol geometry include the work of Berger [1], ZenoRogue [7] (both inverse-exponential and ray-tracing
implementations) and MagmaMcFry [8] (ray-marching).

Producing a fixed image. Imagine that the observer stays at a fixed position in Sol without moving or
rotating. In order to compute the image she would see, we require a few geometric ingredients: a means of
computing the geodesic flow in M , and a signed distance function measuring the distance in M from each
point to the nearest object in the scene (this tells us how far we can safely flow along a geodesic without hitting
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an object). As mentioned above, the geodesic flow in Sol can be solved explicitly using Jacobi’s elliptic/zeta
functions [12]. Note that since Sol has no continuous symmetries fixing the origin o, it is not possible to
reduce the dimension of the problem.

Distance functions are extremely difficult to compute explicitly in Sol. This comes from the fact that
many geodesics do not globally minimize distance. Moreover the form of the geodesic flow is complicated.
Nevertheless, the distance function to a plane {z = c} is rather easy: as the vertical geodesics t → (x, y, z + t)
are minimizing, the signed distance from the point (x, y, z) to the xy-plane is simply the z-coordinate. This
allows us to accurately render planes of this form in Sol. Other objects are rendered using a “fake distance
function” which approximates the true distance.

Moving in the Space. Imagine now that the observer wants to walk and explore the space around her. In
order to render the image she would see, we need a way to compute her position and facing. We decided that
a straight displacement (if the user holds down the forward key) should move the observer along the geodesic
whose tangent vector is given by the direction she is looking, while her orientation around the geodesic is
updated using parallel transport. In contrast to isotropic spaces (such as the euclidean space) there is no
1-parameter group of isometries realizing both displacement and the parallel transport. Hence if the observer
is not infinitesimal, she will get “distorted” during this motion.

In our software, we encode the displacement using elements of Sol (recall that Sol acts freely transitively
on itself by isometries). As for the parallel transport operator, we use an idea explored by Grayson [4].
Let c : R+ → X be a geodesic starting at the origin o. The parallel transport from c(0) to c(t) along c is
an isometry T(t) : Tc(0)X → Tc(t)X . To avoid any confusion we denote by Lc(t) the element of Sol (seen
as an isometry of X) sending the origin to c(t). This can be used to pull back the parallel transport to
the tangent space at the origin. More precisely we focus on the operator of Q(t) : ToX → ToX defined by
Q(t) = dL−1

c(t)
T(t). Identifying ToX with R3, the operator Q(t) is a matrix in SO(3) satisfying

ÛQ + BQ = 0, with B = ©«
0 0 −ux

0 0 uy
ux −uy 0

ª®¬ ,
where u = (ux,uy,uz) is defined by u(t) = dL−1

c(t)
Ûc(t). In practice, all computations here are made with the

Runge-Kutta method.

Quotient Manifolds. To ray-march in the Sol manifold M = Γ \ X depicted above, we identify M with a
fundamental domain D for the action of Γ on X . We defined an algorithm, so that every time a light ray
escapes D it is “teleported” back into D using an element of Γ. In this way the orbits of our flow in D map
to geodesics in M . In the extrinsic model of Sol, the fundamental domain D has the form D0 × [0,2 ln φ),
where D0 is a fundamental domain for the action of the translations g1 and g2 on R2, see Equation (2). The
“teleportation” works as follows. Assume that the point p = (x, y, z) does not belong to D. Translating p by a
suitable power of γ3 we can make sure that p belongs R2×[0,2 ln φ). Then, in either order (as they commute)
we iteratively apply γ1 and γ2 (which do not affect z) until the point has been brought back into D.

Summary and Future Work

In summary, this project has produced a real-time, intrinsic and geometrically correct rendering engine for
Sol geometry and its compact quotients, that has the ability to take movement input from either a keyboard or
headset, and has the ability to render images from two viewpoints simultaneously (for stereoscopic vision).
However, this is still very much a work in progress. The list of features still under development include

1. a good approximation of the Sol distance function to a point, in order to render intrinsic geodesic
spheres,
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2. tracking down and cleaning up the sources of noise in the numerical approximation to Jacobi functions
required for the geodesic flow,

3. computational speedup to allow real-time rendering in high-definition, and
4. given two points {p,q}, a procedure for calculating the tangent vectors at p which correspond to

geodesics reaching q (for accurate lighting considerations).
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