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Abstract
Based on the art of curved crease origami, we give an example of the construction of a family of shapes from
mathematically ideal paper that consists of cylinders and cones and reassembles the structure of a spherical polyhedron
with regular faces. We offer explicit formulas to parametrize the crease curves. Moreover, we illustrate this method
on the five Platonic solids, which can be folded from one single sheet of paper.

Introduction

This paper is a continuation of our work on mathematical curved crease paper folding [6, 7]. Motivated by the
properties of real paper, we model an ideal paper as an infinitesimally thin shape that can be obtained from a
planar patch without stretching or tearing, i.e., as a composition of developable surfaces. The fundamentals
for mathematical paper folding are given by Huffman [5] and Fuchs and Tabachnikov [4]. Further properties
were investigated by Demaine et al. [2, 3].

However, given a folded shape and its development, it is most of the times unknown whether the given
shape would exist in the mathematical world as real paper seems to allow little imperfections. For example,
Demaine et al. [1] show that the so-called pleated hyperbolic paraboloid does not exist without additional
creases. A positive result on the other hand is the folded Vesica Piscis, cf. [6].

In this paper we give a construction method for a family of shapes that consist of planar, cylindrical and
conical patches and are based on spherical polyhedra with regular faces, such as the Platonic andArchimedean
solids. Experimental studies of folded Platonic solids were pursued by Schling and Otterson [8]. However,
their approach is just an approximation of a sphere. Our method on the other hand starts with right circular
cylinders whose profile curves are the resp. great circles on the sphere, i.e., the geodesics connecting two
points of a spherical polyhedron. Those cylinders are then folded into cones with appropriately chosen apices.
Moreover, we then can add additional planar creases that reflect the interior cones, see Figure 1.

Figure 1: A folded Icosidodecahedron and a part of its development
(darker gray depicts the mountain, lighter gray the valley folds).
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Construction

The constuction of the curved crease folded spherical polygon P with vertices P1, . . . ,Pn can be decomposed
into three steps, cf. Figure 2:

1. We first align right circular cylinders and planes along the egdes of P and unroll them to the plane.
2. We compute the crease curves between the cylinders and cones with an appropriate apex.
3. We can add further creases to the cone, e.g., by reflecting the cones at planes.
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Figure 2: Illustration of the proposed three steps in the construction of a folded spherical regular polygon.

Parametrization

Step 1: Constructing the cylinders
We describe the method for a single regular polygon P. We parametrize P’s edges PiPi+1, that is, the great
circles of the underlying (unit) sphere S by ci(s), where we choose w.l.o.g. s ∈ [−sT , sT ] to be the arc length
with ci(−sT ) = Pi−1 and ci(sT ) = Pi. We then align cylindrical patches that are tangential to S and pointing
towards the interior of P along the curves ci. At each vertex Pi, we choose a starting parameter 0 < st < sT
and determine the intersection pointQi of the two corresponding rulings at ci−1(st ) and ci(−st ) and replace the
surface between those rulings by a plane. We then unrollQ = {Q1, . . . ,Qn}w.r.t. the composition of cylinders
and planes into the plane, which results in an open polyline and denote the corresponding objects with a bar,
e.g., Q̄ and Q̄i: the lengths of the edges Q̄iQ̄i+1 are the lengths of the great circles between ci(−st ) and ci(st )
and the angle θ between two consecutive edges Q̄i−1Q̄i and Q̄iQ̄i+1 is defined by cos θ = Pi−1×Pi

|Pi−1×Pi |
·

Pi+1×Pi

|Pi+1×Pi |
.

As the open polyline Q̄ has equal edge lengths and angles it possesses a circumcircle with center M̄ . In the
next step, we want to fold the hereby constructed cylinders into cones with the same apex, so that the crease
curves pass through the vertices of Q and Q̄ resp. For that we choose M̄ to be the developed cone’s vertex
and define its spatial counterpart M by solving for an interior point of S satisfying |M −Qi | = |M̄ − Q̄i |.
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Figure 3: Curved crease folds of the spherical Platonic solids (Tetrahedron, Cube, Octahedron,
Dodecahedron and Icosahedron) and their developments.
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Step 2: Folding the cylinders into cones
As in [6] or [7], we determine the crease curve f by making the ansatz that f and its development f̄ are
parametrized by f (s) = c(s) + l(s)d(s) and f̄ (s) = c̄(s) + l(s)d̄(s), where c is a curve on the first developable
surface, l an unknown length function and d the ruling direction. We denote their corresponding developed
counterparts again with a bar. The length function l of a fold into a cone with vertex M can be computed
from the isometry condition

|c(s) + l(s)d(s) − M | = |c̄(s) + l(s)d̄(s) − M̄ | =⇒ l(s) =
1
2

|c̄(s) − M̄ |2 − |c(s) − M |2

(c(s) − M) · d(s) −
(
c̄(s) − M̄

)
· d̄(s)

. (1)

We can choose a coordinate system so that c(s) = (sin s,0,cos s), d = (0,1,0), c̄(s) = (s,0) and d̄ = (0,1).
Note that for small values of sT − st the length l might become negative and thus f oversteps c. This can be
adjusted by choosing a smaller parameter st .

Step 3: Adding further creases
These hereby constructed cones can either be trimmed or folded. In our examples we reflect the cones along
planes that are perpendicular to a normal of P. The crease curves can also be computed by Equation (1) by
setting c(s) = f (s) to be the previous fold, d(s) = M− f (s)

|M− f (s) | and M to be the reflected cone’s apex.

Remarks
This method can also be applied to more general spherical Polygons as long as their developed polylines Q̄
have a circumcircle. However, the computation does not prevent self-intersetion of the involved surfaces.

Figure 3 illustrates this method on Platonic solids, which can be built without additional cuts from one
piece of paper.
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