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Abstract
Two forms of symmetry which plane patterns can possess are the traditional wallpaper symmetries and the coun-
terchange symmetries enumerated by H.J. Woods. Intermeshed crochet is a technique which may possess, not only
plane symmetries, but symmetries relating the back of the work to the front of the work. We explore how which of
these new symmetries are realizable, and in what combinations they can be realized within a single work.

Introduction

Intermeshed crochet is a technique used to create patterns by interlacing two grids of different colors, with
one grid brought to the front to exhibit its color with each line of the grid. It is also known as double
filet, intermeshing, and interweave, and bears similarities in technique to the more extensively practiced
method of double knitting. An abstracted presentation of how this effect is produced is shown in Figure
1. Although work of this sort requires no advanced crochet techniques and consists entirely of crocheting
simple grids of double crochets and spaces, this technique remains moderately obscure, described only in a
few sources, including a book describing the method and projects implementing it by Tanis Galik [6] and an
article by Kyle Calderhead discussing the extension of the technique to hexagonal and triangular grid-pairs
[3]; tutorials for intermeshed crochet technique can be found at Galik’s site http://interlockingcrochet.com.
Calderhead also made use of intermeshed crochet in a contribution to the 2009 Bridges Art Show [2], and
cited independent development of the technique and unfamiliarity with Galik’s work[4]. The few works
published on intermeshed crochet, in both the crafting and mathematical spheres, have been written largely
without reference to each other.

One striking aspect of intermeshed crochet, which Galik notes and makes use of, is that there is not only
a design of two colors which appears on the front of the work, but a design on the back, which is uniquely
determined by the design on the front but which may look very different. Figure 2 illustrates this effect:
the front side of this coaster was designed to have the space-filling Moore curve appear in black, while the
back of the same work has a patterned collection of black loops which, on casual inspection, do not have any
resemblance to the Moore curve. In this regard intermeshed crochet is very different from double knitting, a
technique it somewhat resembles. In double knitting, the design on the front may be regarded as a two-color
pixelated image, and the design appearing on the back is simply the color reversal of that pixelated image.
In intermeshed square-mesh crochet, however, the colored elements are not the interior of grid squares (as
a pixelated image would be), but the edges of grids; furthermore, the two grids are offset from each other
by half a square. For these reasons, the relationship between the front and the back of the work is more
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Figure 1: Conceptual illustration of intermeshed crochet, in which two grids, here depicted in gray and
white, are intermeshed to form a zigzag pattern
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(a) Front of work (b) Back of work

Figure 2: An interlocking crochet piece featuring the Moore curve, viewed from both the front and back

complicated than mere color-reversal. The same two-color pattern formed by bringing different parts of an
established grid to the front of the work can also be produced by weaving, using a method described by
Ahmed and Deussen as Tuti Patterns [1]. In some work the pattern difference is a liability, as an attractive
image on the front of the work can have a considerably less pleasing back side, but in other work the front
and back exhibit different images which are both aesthetically pleasing.

Since aesthetic quality can derive from symmetry, it is illuminating to determine how the back of an
intermeshed crochet work can appear to be identical to the front, possibly after being subjected to a rotation,
reflection, or translation. Considering the context of repeating patterns, which are the usual choices for motifs
both in Galik’s work and in other crochet pattern libraries, we shall build on the framework and vocabulary
of the seventeen crystallographic or wallpaper groups. Notably, this concept has already been broadened into
discussing symmetries not only within a single “foreground” color, but also symmetries of color-reversal
between a work’s two colors (neither of which can be rightly described as foreground or background), in what
H.J. Woods [8] identified as the 46 counterchange symmetries in the plane. While the crystallographic groups
only identify the symmetries which map one design onto an exact duplicate, Woods’s work classified patterns
according to two distinct symmetries, those which preserved both colors and those which reversed the two
colors. Intermeshed grid crochet, since it describes patterns with not only two colors but also two sides,
admits four different types of potential symmetries: there are the conventional wallpaper transformations
which map a work to an exact duplicate or itself and the counterchange transformations which map a work
to a color-reversed duplicate, just as established by Woods’s study, but there are also transformations which
map a pattern appearing on the front of the work to the location where the same pattern appears on the
back, and those which map a pattern appearing on the front of the work to a location where a color-reversed
variant appears on the back. This will by no means be a full generalization of the known enumerations of the
crystallographic and counterchange groups, since it is both bound to a rectangular grid and implements the
peculiar constraints of intermeshed grid crochet. Calderhead’s hexagonal grid technique might be applicable
specifically to those symmetries which do not invert colors, but a color-inversion symmetry would be unlikely
to be realizable with a hexagonal grid, since this method uses different grids for the two colors and a pattern
appearing on the triangular grid would likely be impossible to replicate on the hexagonal grid.
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Formalization of intermeshed crochet and its patterns

An intermeshed crochet pattern, as mentioned above, is characterized by two intermeshed grids, but all of
the information of how the grids are intermeshed can be described by a single grid, by associating each edge
of the grid with the status of being on the top or the bottom. For purposes of simplicity, we shall call the
grid whose top-or-bottom status we record the “black” grid, which is intermeshed with a “white” grid; as a
practical matter, of course, these could be any color. As in the classifications of the crystallographic groups,
we will assume every intermeshed configuration is periodic, and can consider our underlying grids as infinite
to avoid having to consider the edges of the work. We thus define a set of grid-segments on the integer lattice,
which we represent as ordered pairs of ordered pairs:

G = {((x, y), (x + 1, y)) : x, y ∈ Z} ∪ {((x, y), (x, y + 1)) : x, y ∈ Z}

Of equal importance, but more cumbersome to express, is the offset grid which appears in white:

G′ = {((x + 1
2, y +

1
2 ), (x +

3
2, y +

1
2 )) : x, y ∈ Z} ∪ {((x + 1

2, y +
1
2 ), (x +

1
2, y +

3
2 )) : x, y ∈ Z}

Since an intermeshed pattern can be associated with a single grid, we may define a pattern by the subset
of G which is on the top of the work.

Definition 1. A grid pattern (or offset grid pattern) S is a subset of G (or G′) such that there are linearly
independent vectors u,v ∈ Z2 such that a segment s ∈ S if and only if s + u and s + v are in S. Following
mathematical convention, we will restrict u and v to be the shortest vectors in their respective directions
which express this periodicity property, and refer to the parallelogram with vertices at 0, u, u + v, and v as
the fundamental domain.

Every grid pattern describes not only the black design on the front of the work, but also the white design
on the front and both designs on the back. These other designs may be derived from S as follows:

Definition 2. The conjugate S of a grid pattern S is G − S; likewise the conjugate of an offset grid pattern S
is G′ − S.

Definition 3. The dual S′ of a grid pattern or offset grid pattern S is the termwise mapping of the horizontal
and vertical segments of S as follows:

((x, y), (x + 1, y)) 7→ ((x + 1
2, y −

1
2 ), (x +

1
2, y +

1
2 )) ((x, y), (x, y + 1)) 7→ ((x − 1

2, y +
1
2 ), (x +

1
2, y +

1
2 )).

These two derivations describe which grid lines are visible other than those which are in S and are thus
visible in black on the front of the work. Since every segment is either on the front or the back, the black
segments appearing on the back are exactly those in S (although the visual appearance of the back of the work
is actually a horizontal or vertical reflection of S, since the definition of S preserves the orientation of the
grid as viewed from the front, which is reflected when the work is flipped over). The dual mapping associates
every segment in G with the unique segment in G′ which crosses it. Thus, any segment in S, in black on the
front of the work, has a dual segment in S′, which is visible in white on the back of the work. Thus, S, S, S

′,
and S′ will be respectively the black segments visible on the front, the black segments on the back, the white
segments on the front, and the white segments on the back.

Considering geometric transformations such as translations, reflections, rotations, and glide reflections,
we will call a transformation a standard symmetry of S if it maps S to itself, a color-reversal symmetry if it
maps S to S

′, a complement symmetry if it maps S to S, and a dual symmetry if it maps S to S′. Standard
symmetries thus represent the conventional wallpaper mappings of a pattern to itself and color-reversal
symmetries represent the color-swap symmetries in counterchange patters. The two remaining symmetries
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(a) A standard symmetry under the translation (3,3). (b) A complement symmetry under the translation
(3,3).

(c) A color-reversal symmetry under the translation
(2.5,2.5).

(d) A dual symmetry under the translation (2.5,2.5).

Figure 3: Exhibits of all four symmetry types as translations, showing the set S, the front of an
intermeshed-grid representation, and the back (reflected) of an intermeshed-grid representation.

Dots indicate the square at (1.5,1.5) and its images under transformation.

are present when the design appearing on the back of the work is identical, after perhaps a rotation, reflection,
translation, or color-swap, to the design on the front. The complement symmetries represent a transformation
from one pattern to an identical pattern on the back, while dual symmetries represent a transformation from
one pattern to a color-swapped version of the same pattern on the back. All four symmetries are illustrated
in Figure 3, with a dot in the middle of a distinctive square section of the pattern, to illustrate how the four
different types of symmetries replicate this pattern in four different ways.

Standard and complement symmetries on the grid

The standard symmetries of a grid pattern must conform to one of the 17 wallpaper groups. Five of these
symmetries require threefold rotations which would not map G onto itself, but the other 12 can all be
realized as grid patterns, with only the restriction that axes of reflection must be vertical, horizontal, or 45◦
diagonal lines so that the reflection maps G onto itself. Specific examples can be constructed, by overlaying
a sufficiently high-resolution grid on a black-and-white image possessing the given symmetry, and then
including a segment in S if and only if its midpoint coincides with a black point on the image.

Complement symmetries are the nearest analogue in a grid-design paradigm to Woods’s 46 counter-
change symmetries, since the two colors in a counterchange symmetry are a partition of R2 just as S and
S are a partition of G. As in the case of standard symmetries, the six symmetries which require threefold
rotation cannot be realized periodically on a rectangular grid. In addition, we have further constraints on the
orientation of reflection axes: as above, reflection axes must be oriented in order to map G onto itself, but
in addition the complement reflections must not map any segment onto itself, which a horizontal or vertical
reflection is guaranteed to do, so complement reflections must all be oriented at a 45◦ angle to the grid lines.
Such an orientation is possible for all 40 of the rectangular counterchange symmetries except for two which
have counterchange reflection axes at 45◦ angles to each other: p4m/p4 and p4m/p4g. Here and henceforth,
the Woods symmetries are referred to using type/subtype notation rather than Woods’ original typology. The
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(a) Grid superimposed on pattern, with dots
indicating segment midpoint.

(b) Selection of segments in S by midpoints.

Figure 4: The counterchange pattern pm/p1 converted into a grid pattern with translational standard
symmetry, and translational and reflection complement symmetry.

type/subtype notation, originally developed by Coxeter for describing two-color frieze patterns [5] and then
applied by Washburn and Crowe to plane patterns [7] consists of a type indicated in crystallographic notation
of the group of transformations which map each monochromatic region onto another monochromatic region
(not necessarily of the same color), followed by a subtype describing the subgroup of transformations which
map each monochromatic region onto a region of the same color.

For the remaining 38 counterchange symmetries, the technique of overlaying a grid onto an image and
including segments whose midpoint is black in S will suffice to generate examples of complement-symmetry
analogues on a grid, as long as the grid resolution is suitable for the purpose. This process is illustrated in
Figure 4 on a pattern with the pm/p1 symmetry to produce a grid pattern whose only standard symmetries
are translational, but which possesses a complement reflection. Note that the image must be oriented so that
this reflection symmetry lies along a diagonal of the grid.

Dual and color-reversal symmetries on the grid

Dual and color-reversal symmetries map G onto G′. The grid G could be mapped onto itself by any of
the following transformations: translating a unit number of steps; rotating 90◦ in either direction around
either a lattice point or a point where both coordinates are half-integers; rotating 180◦ around a point where
both coordinates are individually half-integers or integers; reflecting around a horizontal or vertical axis of
the lattice grid or a half-integer step off; reflecting around a diagonal axis on the lattice grid; or using a
glide reflection built of these same valid translation lengths and reflections. Mapping G onto G′, however,
requires a different set of rotations and reflections. Translations must be a half-integer number of steps in
both directions; 90◦ rotations must be around points with one half-integer and one integer coordinate, 180◦
rotations must be around points whose coordinates are both quarter-integers; reflections may only be around
axes which are at 45◦ diagonals offset to the grid by a half-integer step. In addition, the composition of any
symmetry (of any type) with itself must be a standard symmetry, the composition of any symmetry of any
type with a standard symmetry must be a symmetry of the same type, and the composition of a dual symmetry
with a color-reversal symmetry must be a complement symmetry. Furthermore some symmetries are outright
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Figure 5: Application of computer search to subdivide G into sets conforming to a rotational color-change
symmetry around the marked dot, reflectional complement symmetry around the positive-slope

dashed line, and reflectional dual symmetry around the negative-slope dashed line. The number i
on a white background indicates a segment in Si, and on a black background in Si.

impossible: there is no pattern with a color-reversal 90◦ rotational symmetry, because the segment which
passes through the center would be required to be both in S and S.

As a preliminary investigation into this complicated realm, a computational search was conducted
for counterchange patterns which possessed at least one dual or color-reversal symmetry; this search was
conducted over grid patterns whose fundamental domains are 8×8 squares. Each standard and dual symmetry
was assigned and index i and associated with a transformation fi : G → G such that, in order to obey the ith
symmetry of these types, a segment x wold be in S if and only if the segment fi(x) was also in S. Similarly,
each color-change and complement symmetry was assigned an index i and associated with a transformation
gi : G → G such that, in order to obey the ith symmetry of these types, a segment x wold be in S if and only
if the segment gi(x) was not in S.

Furnished with these functions, the search decomposed the grid G into membership-in-S classes as
follows. An arbitrary segment was assigned to S1, and then the functions fi were applied iteratively to every
element of S1, adding the images to S1. Then all the transformations gi were applied to every element of
S1, and the results placed into S1. These two procedures were repeated, adding elements to S1 and S1, until
no further iterations of the procedure added new elements to S1 or S1, ensuring that both S1 and S1 would
be closed under every fi, and that every gi maps each element of S1 to an element of S1. Then, among the
segments not yet assigned to S1 or S1, an arbitrary segment was placed into S2, and the same procedure as
above used to assign additional segments to S2 and S2. New sets were produced until every segment was
assigned to some set Sj or S j . If at any point a segment was assigned to both Sj and S j , the procedure
terminated reporting that the set of given symmetries were incompatible.

An example of this procedure, as practiced on an 8× 8 grid, is the determination of which sets S possess
an 180◦ rotational color-change symmetry around the point ( 1

4,
1
4 ), a complement reflection symmetry across

the line y = x, and a dual symmetry across the line y = 1
2 − x. These correspond respectively to the functions

g1(x, y) = (1
4 − x, 14 − y), g2(x, y) = (y, x), and f1(x, y) = (1

2 − y, 12 − x), where a segment is described by
the coordinates of its midpoint. The algorithm described above partitions the 128 segments in G into 36
sets Si and their complements Si, as shown in Figure 5. Once this procedure is complete, a set S possessing
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(a) Elements of the set S (b) Symmetries of the two-color pattern: dots
are color-change rotations, positive-slope
dashed lines are complement reflections,
and negative-slope dashed lines are dual

reflections

Figure 6: A grid pattern possessing symmetries of all four types

the desired symmetry can be constructed by taking a union of one part from each complement class, i.e.
S =

∪
Ai where each Ai is either Si or Si.

Below, symmetries are denoted using the crystallographic notation of representing a rotational k-fold
symmetry with the numeral k and a symmetry under reflection with the letter m. However, modifiers will be
placed on these symmetries so as to indicate those which are not standard symmetries: a dual symmetry will
be indicated with a prime (e.g. 2′ for a pattern which possesses dual symmetry under an 180◦ rotation), a
complement symmetry with an overline, and a color-reversal symmetry with both an overline and a prime. As
in crystallographic notation, a concatenation of multiple symbols indicates multiple symmetries, e.g. 2mm′

would describe a pattern which has a complement 2-fold rotation symmetry, a standard reflection symmetry,
and a dual reflection symmetry (presumably around a different axis).

Patterns which possess at least one complement symmetry, regardless of which of the 38 grid-realizable
counterchange symmetry patterns they fall into, can only conform to one of a very small number of dual
and color-reversal symmetries: they can possess the dual symmetry under an 180◦ rotation 2′, the dual
symmetry across an axis of reflection m′, the color-change symmetry under an 180◦ rotation 2

′
, or the above

symmetries in the combinations 2′m′, m′m′, 2
′
, 2

′
m′, or 2

′
m′m′. The computer search result exhibited in

Figure 5 indicates that the 2
′
m′ symmetry (which of necessity possesses reflection complement symmetry,

as the composition of 2
′
and m′) on an 8 × 8 fundamental domain can give any of 236 patterns, since S is a

union of 36 sets, each of which can be either Si or Si. One example of such a pattern is depicted in Figure 6;
this particular example was produced by letting S =

∪18
i=1 S2i−1 ∪

∪18
i=1 S2i.

Symmetries in pattern libraries

Much of the text of Galik’s Interlocking Crochet is devoted to describing patterns to be used in intermeshed
crochet. Nine of the patterns are designated as “single designs” where the pattern given appears (possibly
subjected to a rotation or reflection) on both sides of the work in the same color; 35 other pairs of patterns are
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called “double designs”, which are crafted such that distinct designs appear on the front and back. Galik’s
classification specifically differentiates between those patterns which possess a complement symmetry and
those which do not. The first nine designs can be classified as counterchange patterns, but only exhibit 5
different symmetries: p1/p1, pm/pm(m), p2/p2, pmg/pmg, and p4m/pmm. Since many more symmetries
exist, there are likely extraordinary designs which have identical appearance on the back and front which are
not yet cataloged.

Among Galik’s double-design pairs, it is unsurprising that almost all of the patterns possess standard
symmetries beyond p1, mostly p4m and pmm, with a few pg. However, three stand out as possessing
symmetry which exploits the grid-duality structure. Design pair 1 & 2 (“Rows/Columns”) has a p4m/pmm
counterchange symmetry but also has a translational color-reversal symmetry and a rotational dual symmetry.
Pair 9 & 10 (“Lattice Columns/Lattice Rows”) has no complement symmetries but still possesses a pmm
standard symmetry and a 90◦ rotational dual symmetry. Pair 21 & 22 (“Chevron—Light on Dark/Dark on
Light”) has pm standard symmetry and a 180◦ rotational dual symmetry.
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