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Abstract
The tetrahemihexahedron is the only uniform polyhedron that is topologically equivalent to the projective plane.
Many other polyhedra having the same topology can be constructed by relaxing the conditions, for example those
with faces that are regular polygons but not transitive on the vertices, those with planar faces that are not regular,
those  with  faces  that  are  congruent  but  non-planar,  and  so  on.  Various  techniques  for  generating  physical
realisations of such polyhedra are discussed, and several examples of different types described. Artists such as
Max Bill have explored non-orientable surfaces, in particular the Möbius strip, and Carlo Séquin has considered
what  is  possible  with some models of  the projective plane.  The models described here extend the range of
possibilities.

The Tetrahemihexahedron
A two-dimensional projective geometry is characterised by the pair of axioms: any two distinct points
determine a unique line; any two distinct lines determine a unique point. There are projective geometries
with a finite number of points/lines but more usually the projective plane is considered as an ordinary
Euclidean plane plus a line “at infinity”. By the second axiom any line intersects the line “at infinity” in a
single point,  so a model of the projective plane can be constructed by taking a topological disc (it is
convenient to think of it as a hemisphere) and identifying opposite points. The first known analytical
surface matching this construction was discovered by Jakob Steiner in 1844 when he was in Rome, and it
is known as the Steiner Roman surface. A polyhedron corresponding with this surface was described by
Hilbert [3], who called it simply a heptahedron (since it has seven faces, three squares and four triangles).
It is a uniform polyhedron so it is included by Wenninger [6], where it is called the tetrahemihexahedron.
It can be derived from an octahedron by removing alternate faces and adding the diametral squares.

The arrangement of vertices, edges and faces of the tetrahemihexahedron can be derived from the
cuboctahedron (Figure 1) by identifying opposite vertices (with the corresponding edges and faces). If the
cuboctahedron is taken as a tiling of the sphere, the tetrahemihexahedron is a tiling of the hemisphere with
opposite points on the bounding circle identified, i.e. it is a tiling of the projective plane, so it could also
be called a hemi-cuboctahedron. Identifying the opposite vertices of a polyhedron will always produce a
tiling  of  the  projective  plane,  although  finding  a  corresponding  physical  realisation  of  the abstract
polyhedron generated like this is not always easy, and the method works only with polyhedra that have
inversion symmetry (reflection in the centre point does not change the polyhedron) so that the opposite
elements correspond.

One consequence of the identification of opposite elements is that the resulting polyhedron has lost
inversive  symmetry,  and  the  cubic  symmetry  of  the  cuboctahedron  has  been  reduced  to  tetrahedral
symmetry in the tetrahemihexahedron.

 

Figure 1: The tetrahemihexahedron compared with the cuboctahedron.
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The tetrahemihexahedron is a special type of cuploid [4]. The cuploids, and their duals, all have the
topology of the projective plane.

Truncation
There are several ways to create new polyhedra from existing ones. For example a realisation of the hemi-
icosahedron  is  easily  made  from  the  tetrahemihexahedron  by  halving  the  square  faces  along  their
diagonals, recalling the observation that the regular icosahedron appears in the jitterbug transformation of
the cuboctahedron into the rhombicuboctahedron. Since there are two squares at every vertex this can be
done in two ways to produce different polyhedra that are mirror images of each other. Of course the faces
are not all regular: six of them are isosceles right-angled triangles.

Truncation is  one of  the more obvious methods  to  use.  Applying it  to  the tetrahemihexahedron
produces  the hemi-rhombicuboctahedron,  just  as the regular rhombicuboctahedron can be  formed  by
truncating the cuboctahedron and adjusting the rectangular faces that are produced to become squares. The
corresponding faces in the hemi-polyhedron are crossed quadrilaterals, and no such adjustment is possible,
although it  is possible to uncross two of  the three parallel pairs.  The resulting polyhedron retains the
square diametral faces but in the most symmetrical version the triangles are coplanar with them, and the
uncrossed quadrilaterals become trapezoidal (Figure 2).

                   

Figure 2: The truncated tetrahemihexahedron or hemi-rhombicuboctahedron and a different
realisation of the same polyhedron with some faces coplanar (the triangles are a darker shade).

Non-planar Faces
If faces are allowed to be non-planar, hemi forms of many more polyhedra become possible. Triangles
must be planar, so there are no new deltahedra, but the other Platonic polyhedra work. The hemi-cube is
particularly simple with three quadrilateral faces with edges matching those of the tetrahedron (Figure 3).

The hemi-dodecahedron is particularly interesting. Its edges are those of the Petersen graph, the usual
representation of which suggests an obvious way to realise it (Figure 4). One face (the base) is a regular
planar pentagon. The other five each share an edge with it, and have two edges in common with the star
pentagon, which is above the base. The other two edges are almost vertical, connecting the two levels.

                                                          

Figure 3: The hemi-cube.                            Figure 4: The Petersen graph and an equilateral
realisation of the hemi-dodecahedron. 
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There is another realisation of the hemi-dodecahedron that is more symmetrical, having all its faces,
which can be made equilateral, the same. It does not have the five-fold symmetry of Figure 4 but has

tetrahedral symmetry instead. If triangular pyramids with angles of 36° are erected on the equilateral faces
of  the Jessen icosahedron that  occurs in  the jitterbug transformation of  the octahedron the “inverted
dodecahedron” results. In a similar way pyramids can be erected on the equilateral faces of the hemi-
icosahedron to define the edges of this hemi-dodecahedron (Figure 5).

   

Figure 5: The inverted dodecahedron and its hemi form.

Another realisation can be constructed by bending the “ears” of the faces of the hemi-dodecahedron until
the tips arrive at points antipodal to their starting positions. Again the resulting pentagons can be made
equilateral (Figure 6). Figure 7 shows three views of the resulting polyhedron. 

           

Figure 6: Two views of an equilateral pentagon along with the edges of a hemi-dodecahedron.

The tetrahemihexahedron has mirror symmetry, but the  hemi-icosahedron derived from it exists as two
enantiomorphic forms depending on which diagonals of the square faces are cut. In the same way the
hemi-dodecahedra in Figures 7 and 9 seem to have mirror symmetry, but it is broken when the faces are
identified. In fact the pentagonal faces  are not mirror symmetrical as can be seen in Figure 6.

                

Figure 7: Three views of another isohedral equilateral hemi-dodecahedron.

Polyhedral Models of the Projective Plane

545



Another  interesting  model  with  non-planar  faces  is  the  hemi  truncated  octahedron.  It  has  four
hexagonal faces, one of them planar, and three crossed quadrilaterals. Going around the regular hexagon
its edges join alternately with the three non-planar hexagons and the quadrilaterals. On any of the other
hexagons the adjacent edges join with diagonal edges of two quadrilaterals. The remaining three edges
join with both the other hexagons and the other quadrilateral. Figure 8 shows a view of the polyhedron
both with and without the regular hexagon.

           

Figure 8: The hemi truncated octahedron with and without the regular hexagon.

Conclusion
Projective polyhedra have been considered from a theoretical point of view [2] but there have been few
attempts to investigate possible physical realisations. Most famously Max Bill based sculptures on the
Möbius strip but never thought about closing it to form the projective plane. Carlo Séquin considered
possible artistic applications of smooth surfaces that are embeddings of the projective plane [5] but the
possibilities for sculpture based on objects such as the equilateral isohedral hemi-dodecahedra remain to
be explored.
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Many of  the examples  described  would  not  have been discovered  without  the use of  Hedron [1],  a
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by Jim McNeill. In some cases the image was suitable for use immediately but, because most of  the
examples do not have regular (or even planar) faces so the output is distorted, more work was needed and
the final image was created using Rhino. 
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