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Abstract
Digital inpainting methods provide an important tool in the restoration of images in a wide range of ap-
plications. We present mathematical methods with certain higher order partial differential equations for
the inpainting of ancient frescoes. In particular we discuss the Cahn-Hilliard equation for the inpainting
of binary structure and a higher order total variation approach. As an example for the preformance of our
algorithms we consider the recently discovered Neidhart frescoes in Vienna.
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1 Introduction

An important task in image processing is the process of filling in missing parts of damaged images
based on the information gleaned from the surrounding areas. It is essentially a type of interpolation
and is called inpainting.

In the course of an ongoing interdisciplinary project1 the authors aim to use digital inpainting
algorithms for the restoration of frescoes. Particular consideration have the new found Neidhart fres-
coes (Tuchlauben 19, 1010 Vienna). These ancient frescoes from the 14th century are depicting a
cycle of songs of the 13th century minnesinger Neidhart von Reuental. Hidden behind a wall over
years the frescoes got damaged in the process of exposure. Advanced mathematical tools were devel-
oped specifically for so-called ”mathematical inpainting/retouching” of digital images. To this end,
variational methods and third and fourth order partial differential equations have been investigated.
Efficient numerical methods for the solution of the devised partial differential equations have been
designed.

In the following we discuss our mathematical inpainting methods and present numerical results
from their application to the Neidhart frescoes.

2 Neidhart frescoes

Fragments of 14th century wall frescoes found beneath the crumbling plaster of an old apartment
in the heart of Vienna, depict a popular medieval cycle of songs of the 13th century minnesinger,
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Figure 1: Part of the Neidhart frescoes

Neidhart von Reuental. In the very late 14th century, Michel Menschein, a wealthy Viennese council
member and cloth merchant, commissioned local artists to paint the stories in Neidhart’s songs on
the walls of his Festsaal (banquet hall). The Neidhart frescoes provide a unique peek into medieval
humor, and at the same time, a peek into the taste of a medieval man.

In Figure 1 a part of the Neidhart frescoes is shown. The white holes in the fresco are due to the
wall which covered the fresco until a few years ago. They arised when the wall was removed. In the
following we want to apply digital restoration methods to these frescoes. Thereby the main challenge
is to capture the structures in the preserved parts of the fresco and transport them into the damaged
parts continuously. Due to their great age and almost 600 years of living by owners and tenants in the
apartment, saturation, hue and contrast quality of the colors in the frescoes suffered. Digital grayvalue,
i.e., color interpolation, in the damaged parts of the fresco therefore demands sophisticated algorithms
taking these lacks into account.

3 Methods

In the following we present the mathematical methods we used in order to reconstruct the damaged
parts in the fresco. We begin with stating the mathematical variational approach for this task and
roughly summarize existing inpainting methods of this type. In particular two inpainting methods
based on higher order partial differential equations, i.e., Cahn-Hilliard- and TV −H−1− inpainting,
are to be presented. We finalize this section by proposing a possible strategy to adapt these two
inpainting approaches to the requirements of the Neidhart frescoes.

Given an incomplete image f represented by an intensity function (or by a vector of intensity
functions) in a suitable Banach space, defined on Ω ⊂ R

2 an open and bounded domain, the problem
is to reconstruct the original image u in the damaged domain D ⊂ Ω, called inpainting domain. In
the following we are especially interested in so called non-texture inpainting, i.e., the inpainting of
structure, like edges and uniform coloured areas in the image, rather than texture. In the pioneering
works of Caselles et al. [6] (who called it disocclusion instead of inpainting) and Bertalmio et al. [2]
partial differential equations have been first proposed for digital non-texture inpainting. The inpainting
algorithm in [2] extends the graylevels at the boundary of the damaged domain continuously in the
direction of the isophote curves to the interior via anisotropic diffusion. The resulting scheme is a

  164



discrete model based on nonlinear partial differential equations:

ut = ∇⊥u ·∇∆u,

solved inside the inpainting domain D using image information from a small stripe around D. The
operator ∇⊥ denotes the perpendicular gradient (−∂y,∂x). In subsequent works variational models,
originally derived for the tasks of image denoising, deblurring and segmentation, have been adopted to
inpainting. In contrast to former approaches, like [2], the proposed variational algorithms are applied
to the image on the whole domain Ω. This procedure has the advantage that inpainting can be carried
out for several damaged domains in the image simultaneously and that possible noise outside of the
inpainting domain is removed at the same time. The general form of such a variational inpainting
approach is

û(x) = argminu∈H1(Ω)(J(u) =
∫

Ω
R(u)dx+

1
2
‖λ ( f (x)−u(x))‖2

H2(Ω)),

where f ∈ H2(Ω) (or f ∈ H1(Ω) depending on the approach) is the given damaged image and û ∈
H1(Ω) is the restored image. H1(Ω),H2(Ω) are Banach spaces of functios defined on Ω and R(u)
is the so called regularizing term R : H1(Ω) → R. The function λ is the characteristic function of
Ω \D multiplied by a large constant, i.e., λ (x) = λ0 >> 1 in Ω \D and 0 in D. Depending on the
choice of the regularizing term R(u) and the Hilbert spaces H1, H2 various approaches have been
developed. The simplest model is the total variation model, where R(u) = |Du| the total variation of
u, H1 = BV (Ω) the space of functions of bounded variation and H2 = L2(Ω), cf. [10, 8, 19, 20]. A
variational model with a regularizing term of higher order derivatives, i.e., R(u) = (1+∇ ·( ∇u

|∇u|))|∇u|,
is the Euler’s elastica model [7, 17]. Other examples are the active contour model based on Mumford
and Shah’s segmentation [21], and the inpainting scheme based on the Mumford-Shah-Euler image
model [11].

Now second order variational inpainting methods (where the order of the method is determined
by the derivatives of highest order in the corresponding Euler-Lagrange equation), like total variation
inpainting (cf. [20], [8], [9]) have drawbacks as in the connection of edges over large distances or
the smooth propagation of level lines (sets of image points with constant grayvalue) into the damaged
domain. In an attempt to solve both the connectivity principle and the so called staircasing effect
resulting from second order image diffusions, a number of third and fourth order diffusions have been
suggested for image inpainting.

A variational third order approach to image inpainting is the CDD (Curvature Driven Diffusion)
method [9]. Solving the problem of connecting isophotes over a wide range the isophotes are still
interpolated linearly. This has driven Chan, Kang and Shen to a reinvestigation of the earlier proposal
of Masnou and Morel [17] on image interpolation based on Eulers elastica energy. In their work [7]
(already mentioned earlier in this section) the authors present the fourth order elastica inpainting PDE
which combines CDD and the transport process of Bertalmio et. al [2]. The isophotes are connected
by minimizing the integral over the length and the squared curvature within the inpainting domain.
This leads to a continuous connection of isophotes also over large distances. Of course this can also be
interpreted via the second boundary condition, necessary for an equation of fourth order. Not only the
grayvalues of the image are specified on the boundary of the inpainting domain but also the gradient
of the image function, namely the direction of the isophotes are given. Further also combinations of
second and higher order methods exist, e.g. [16]. The combined technique is able to preserve edges
due to the second order part and at the same time avoid the staircase effect in smooth regions. A
weight function is used for this combination.
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The main challenge in inpainting with higher order flows is to find simple but effective models and
to propose stable and fast discrete schemes to solve them numerically. A new approach in the class
of fourth order inpainting algorithms is inpainting of binary images using a modified Cahn-Hilliard
equation [3], [4]. In these works Bertozzi, Esedoglu and Gillette proposed an inpainting approach for
binary images using a modified Cahn-Hilliard equation. The inpainted version u(x) of f (x) ∈ L2(Ω)
is constructed by following the evolution equation

{
ut = ∆(−ε∆u+ 1

ε F ′(u))+λ ( f −u) in Ω,
∂u
∂ν = ∂∆u

∂ν = 0 on ∂Ω,
(1)

with F(u) is a so called double-well potential, e.g., F(u) = u2(u−1)2, and

λ (x) =

{
λ0 Ω\D
0 D

is the characteristic function of Ω\D multiplied by a constant λ0 >> 1.
A generalization of the Cahn-Hilliard inpainting approach to an approach for grayvalue images

provides the so called TV −H−1− inpainting, see [1]. This is realized by using subgradients of the
total variation functional within the flow, which leads to structure inpainting with smooth curvature of
level sets. The connection to Cahn-Hilliard inpainting is that solutions of a discretized Cahn-Hilliard
inpainting approach Γ-converge to solutions of an iterative scheme for TV −H−1 inpainting. A similar
form of this Γ-limit already appeared in the context of decomposition and restoration for grayvalue
images, see for example [18] and [15].

TV −H−1 inpainting is proposed in the following way: Let f ∈ L2(Ω), | f | ≤ 1 be the given
grayvalue image. The inpainted version u(x) of f (x) evolves in time like

ut = −∆(∇ · ( ∇u
|∇u|))+λ ( f −u), (2)

where p̂ ∈ ∂TV (u) is replaced by the formal expression ∇ · ( ∇u
|∇u|).

Both inpainting algorithms (1) and (2) can be numerically solved in a fast way by so called con-
vexity splitting methods, see section 4 and [5] for details.

As mentioned in section 2 the Neidhart frescoes pose a special challenge concerning their digital
restoration. We summarize the main issues in the following list:

1. Lack of grayvalue contrast

2. Low color saturation and hue

3. Damaged parts can be rather big, i.e., the diameter of the damaged domain can be larger than
the width of lines which are to be continued into the damaged part

So we need an inpainting approach which takes into account these possible difficulties and solves (or
circumvent) them. As we have pointed out earlier in this section the third issue can be solved by
using a higher order inpainting method such as (1) and (2). Unfortunately difficulties two and three
prevent the effective application of these methods. As the contrast between grayvalues is low the
edges (which identify the main structure of an image) are not clearly defined. As inpainting lives and
dies with uniqueness of edge continuation (cf. Figure 2) we possibly run into troubles if we do not
preprocess the digital images of the fresco in an adequate way.

Namely we follow two strategies
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Figure 2: (l.) What is the right solution? (r.) Part of the Neidhart fresco: How should the inpainting algorithm decide in
this case?

Figure 3: Part of the Neidhart frescoes

• Strategy1: Structure inpainting on binary images with the Cahn-Hilliard equation. Based on the
so recovered binary structure the fresco is colorized (cf. [13])

• Strategy2: Apply TV −H−1 inpainting in two steps. First with a small λ0, e.g., λ0 = 1, to merge
together fine artifacts in the fresco by diffusion. In the second step we choose a large λ0 >> 1,
e.g., λ0 = 103, to reconstruct the fresco inside the damaged parts.

In the next section we present first numerical results following these two strategies.

4 Numerical Results

In the following numerical results for the two inpainting approaches (1) and (2) are applied to the
Neidhart frescoes. For both approaches we used convexity splitting algorithms, proposed by Eyre in
[12], for the discretization in time. For more details to the application of convexity splitting algorithms
in higher order inpainting compare [5].

For the space discretization we used the cosine transform to compute the finite differences for
the derivatives in a fast way and to preserve the Neumann boundary conditions in our inpainting
approaches (also cf. [5] for a detailed description).

Both algorithms are applied to small parts of the Neidhart fresco (cf. Figure 4 for orientation)
following our two strategies described in section 3.
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Figure 4: (l.) Part of the fresco; (m.) binary selection; (r.) Cahn-Hilliard inpainting with λ0 = 107: f.l.t.r.: binarized
selection of the fresco; initial condition for the inpainting algorithm where the inpainting region is marked with a gray
rectangle; inpainting result after 200 timesteps with ε = 3; inpainting result after additional 800 timesteps with ε = 0.01

Figure 5: Part of the fresco; (m.) binary selection; Cahn-Hilliard inpainting with λ0 = 106: f.l.t.r.: binarized selection
of the fresco; initial condition for the inpainting algorithm where the inpainting region is marked with a gray rectangle;
inpainting result after 200 timesteps with ε = 4; inpainting result after additional 800 timesteps with ε = 0.01

4.1 Binary fresco inpainting

For the discretization in time we use a convexity splitting scheme applied by Bertozzi et al. [4] to
Cahn-Hilliard inpainting. The numerical scheme is of the form

uk+1 −uk

τ
+ ε∆∆uk+1 −C1∆uk+1 +C2uk+1 =

1
ε

∆F ′(uk)−C1∆uk +λ ( f −uk)+C2uk, (3)

with constants C1 > 1
ε , C2 > λ0.

As described in the previous section in strategy 1 we begin with the inpainting of the binary
structure of the frescoes by means of (3), cf. Figure 4-5. In our numerical examples we applied (3)
in two steps (cf. [4]). In the first few iterations we solve (3) with a rather big ε , e.g., ε = 3. We stop
when we are sufficiently close to a steady state. Then we switch the ε value to a smaller one, e.g.,
ε = 0.01. Using the steady state from the first few iterations of (3) with a large ε as initial condition,
we apply the iteration now for the switched ε . Again we stop when we are at, i.e., sufficiently close
to, the steady state.

The next step will be to recolorize the damaged parts by using the recovered binary structure as
underlying information. This can be done for instance as in [13] and [14].
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Figure 6: TV −H−1-inpainting applied to a part of the Neidhart fresco

Figure 7: TV −H−1-inpainting following strategy 2. f.l.t.r. part of the Neidhart fresco; preprocessed image; initial
condition for the inpainting algorithm where the inpainting domain is marked as a gray rectangle; preliminary inpainting
result (algorithm carried out until err ≈ 10−4). Inpainting difficulties due to the reasons indicated in Figure 2 are clearly
visible.

4.2 Grayvalue fresco inpainting

We consider the steepest descent equation (2) and apply as before a convexity splitting method for its
time discretization (cf. [5]). The resulting time-stepping scheme is

uk+1 −uk

τ
+C1∆∆uk+1 +C2uk+1 = C1∆∆uk −∆(∇ · ( ∇uk

|∇uk|))+C2uk +λ ( f −uk). (4)

In order to make the scheme unconditionally stable, the constants C1 and C2 have to be chosen such
that C1 > 1

δ and C2 > λ0.
In Figure 6 the algorithm (4) has been applied to a small part of the Neidhart frescoes. In this

particular case we didnt even have to preprocess the image because only plain grayvalue information
was to be imported into the inpainting domain. Whereas in Figure 7 we acted on strategy 2. Namely
we primarily denoised the image by (4) with λ (x) = λ0 on the whole image domain and applied the
inpainting algorithm ((4) with λ (x) = 0 inside the inpainting domain D) on the ”cleaned” image in a
second step.
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