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Abstract 

Music perfonnance and enjoyment involve stylish interpretation, intonation, rhytlun and specific teclmique 
associated with various instrwnents. While artistic interpretation is su~ective - different audiences may 
enjoy different styles - the precision of the pitch of a certain tone, hence the harmony of a chord, is a physics 
phenomenon and can be determined mathematically. The enjoyment of music perfonnances is certainly 
affected by whether or not the tones are generated correctly. This article attempts to explore objective criteria 
that can be measured mathematically for "better" or ''best'' playing of music in terms of harmonic chords and 
tonal relations in the melody. This measurement can be used in determining a tuning system of an instrument 
to "optimize" the playing of a certain piece of music. With the advancement of ever so sophisticated 
electronic digital keyboards and computers as a new generation of perfonning and recording instruments, one 
can predetermine the best tuning system for a specific piece of music. Some segments of classic music will 
be used as examples. 

1. Introduction to Harmony 

The pitch of a given musical tone is determined by the frequency of vibration of the sound wave that 
produces it. For example, the frequency of ~ is widely accepted as being 440 Hz. When two or more 
pitches are generated simultaneously or in a rhythmic sequence, they form a chord or melody. Composers 
and musicians use different types of chords and melodies to express various emotions and to describe 
characters. Consonant (harmonic) chords or broken chords are usually adopted in pleasant themes, while 
agitating disturbance is often displayed with a series of dissonant chords. 

Why are only certain chords perceived by humans as pleasant? Pythagoras (580 BC - 500 BC) was 
credited as the first to find the simple whole number ratio of consonant pitches. Take chords with two 
different pitches as examples. The ratio of the frequencies of the two pitches that form a perfect fifth is a 
simple 3 to 2 (the frequency of the higher pitch to that 9fthe lower pitch), while that of a major third is 5 
to 4. A special ratio of 2 to 1 is for two pitches in an octave, which for some unexplainable reason are 
perceived by human ears as the "same." 

With the help of mathematics and physic, the relation can be better understood by, for example, the 
vibration of a string with length I of a string instrument. This vibration can be expressed as a Fourier 
series (For simplicity, we assume only initial displacement): 

co 

u(x,t) = :Lbnlsin n7(x+ct)+sin n7(x-ct)] 
n=l 

The traveling wave speed c = ..f!; , where T is the tensile force exerted on the string, p is the density and 

A is the cross-sectional area of the string. The frequency of each term in the Fourier series is 
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n=1,2,···. 

The frequency of the leading term, ~, is the frequency of the pitch of that string. Every string player can 
easily identify with this formula. When a string sounds flat, you turn the peg to tighten the string, i.e., to 
increase the tension T. The lower strings are thicker, i.e., with larger cross-sectional area A, so that the 
pitches are lower. Aluminum strings have lower density than that of steel strings; therefore they require 
less tension to reach the same pitch, so they can be made thicker and softer, which is believed to make the 
sound mellower. 

The Fourier series reveals that the sound of a vibrating string consists of a series of different pitches 
whose frequencies have the ratio relations 1: 2: 3: 4: 5: 6: 7: 8 .. ·. The first and second pitches form an 
octave, the second and third form a perfect fifth, the third and fourth form a perfect fourth, the third and 
the fifth form a major sixth, the fourth and fifth form a major third, the firth and the sixth form a minor 
third. The number 7 or greater are considered too large for simple whole number ratios, except the ratio 
of8:5, which is the inversion of major third and is called the minor sixth. 

One might wonder why we do not hear all the different pitches from the same vibrating string. The 
reason is that the amplitude of each pitch, b n' decreases quickly as the inverse of the square of n, and the 

first two dominant pitches are already in an octave relation. String players often use a technique to play 
only the second, third or fourth harmony by placing a finger lightly at the position of one half, one third, 
or one fourth of the string length. For example, placing a finger at the position of one third of the length 
of a string with At base pitch without pressing all the way down to the fingerboard will suppress the first 
and second harmony but allow the entire string to vibrate. This will produce the pitch of the third 
harmony, E5. Theoretically, one can produce all the pitches in the Fourier series. However, except for 
the first few, most of them are either too weak, or of too high frequencies to be heard by human ears. 

2. Problems in Tuning 

However, this simple ratio relation between harmonic pitches causes problems in scales. Take a keyboard 
instrument with white and black keys (in chromatic scales) as an example. If one tuned all fifths in a 

perfect 3:2 ratio, the ratio of the frequencies ofCgto C I would be (3/2)12 ::: 129.75. This is because 

Mean while, if all the octaves were tuned perfectly with a ratio of 1 :2, the frequency ratio of Cg to CI 

would be 

fcs = fCg fC7 fC6 fcs fC4 fC3 fC 2 = 27 = 128. 
fc, fC7 fC6 fcs fC4 fC3 fC2 fe, 

This means that ifC I of the two pianos are tuned exactly the same, then Cs will be off. 
To resolve this discrepancy, Pythagoras suggested, in addition to tuning all octaves perfectly, 

keeping all fifth perfectly tuned, except the enharmonic fifth G# _Eb which was tuned to the ratio of 
218 /311 ::: 1.4798 so that all the octaves can be kept perfectly tuned. Pythagoras based on his choice on 
that perfect fifths have the next simplest ratio of 3:2 after the simplest ratio of 2:1 for an octave. 
However, this enharmonic fifth is not the usual 3/2 = 1.5. The two frequencies are too close to each 
other. In musical term this chord is said to be "flat," since the higher note sounds flat comparing to the 
base note. When a piece of music is played on an instrument tuned with Pythagorean system, as long as 
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the enharmonic fifth G~_Eb is not used, all the octaves and fifths will sound perfectly. However, there are 
other chords that are considered to be harmonic. For example, the frequency ratio of the major third 
interval C-E is 

I~ lal IDl IAl IE3 IEl lEI 333 3 1 1 81 
-=------=------=-
ICI ICI lal IDl IAl IE3 IEl 2 2 2 2 2 2 64 

This is not the simple ratio 5/4 = 80/64 for a major third chord. The ratio of 81/64 makes this major 
third chord "sharp," since the top note EI sounds sharp comparing to the base note C I . It can be similarly 
verified that other harmonic intervals, such as minor sixths, are also imperfect. Some of them are "sharp" 
and some are "flat." To accommodate all the harmonic intervals, various tuning systems were proposed 
and adopted. One of the objects of this article is to quantify the comparison. We will discuss the 
difference between the different tuning systems in the following section. 

3. Quantification of Off-pitches in Tuning Systems 

As mentioned above, no tuning system can keep every harmonic interval in perfect simple whole number 
ratio. But how much off is each system comparing to others? The terminology of "cents" is thus 
introduced to measure this error. The frequency ratio of an octave is divided into 1200 equal ratios, each 
is represented by a cent, i. e., two pitches are one cent apart if the ratio of their frequencies satisfies 

- I" ± I 
_J_11 = 2 llOO. 

12 

A pitch with frequency II is n cents higher (n > 0 ) or lower (n < 0 ) than the pitch with frequency 12 if 

fi = 21~ , or n = 1200 log 2 (fi ) = -12002 (/2 ) . 
12 12 fi 

For example, the note E of the major third C-E with a simple whole number ratio of 5:4 is 
1200 log2 (5/4) ~ 386.3 cents higher than C. However, in the Pythagorean tuning system, C-E has the ratio 

of64/81. The top note E therefore is 12001og2(81164)~407.8cents higher than C. This is 21.5 cents 

higher (sharp) than that in an ideal major third chord. Therefore the major third C-E is 21.5 cents sharp in 
the Pythagorean tuning system. 

How many cents an interval is "off" can be calculated with the following formula: 

O=1200[lOg2(actualratio)-lOg2(simPleWholenumberratio)]=120010g2(. 1 a~~rati°be .). 
Simp e woe num r ratio 

As mentioned earlier, the ratio of the sacrificed enharmonic fifth G# _Eb in the Pythagorean system is 
218 /311 ~ 1.4798. With this formula, we calculated the error for G# _Eb to be 

218 /311 219 
0= 1200 log 2 = 1200 log 2 - ~ -23.46 cents, 

3/2 312 

i.e., this enharmonic is about 23.5 cents flat. Thus the enhannonic major thirds, for example G#_Eb, which 
involve the fifth G#_Eb in the tuning relation, are 2 cents flat, instead of 21.5 cents sharp. One can use this 
formula to calculate the errors in cents of other harmonic chords in the Pythagorean tuning system. 

There have been other attempts on tuning systems to compromise the different harmonic intervals. 
The so called "Just Intonation" makes the three diatonic major thirds and three of the diatonic major 
sixths perfect by sacrificing the fifth D-A by 21.5 cents flat. The "mean-tone temperament" system makes 
all (except enharmonic) major thirds perfect. The perfect fifths and major sixths are all tolerable with 5.4 
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Pythagorean Just Intonation Mean-Tone Equal Temper 
Ratio ±cents Ratio ±cents Ratio ±cents Ratio ±cents 

P5/P4 .. 

F-C 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
C-G 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 

G-D 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
Diatonic 

D-A 1.5000 0 1.4815 -21.5 1.4953 -5.4 1.4983 -1.95 
A-E 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
E-B 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
B-F# 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
P-C# 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 

Chromatic C#-G# 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
Eb_Bb 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 
Bb_F 1.5000 0 1.5000 0 1.4953 -5.4 1.4983 -1.95 

Enharmonic G#_Eb 1.4798 -23.5 1.4983 -1.95 1.5312 +35.7 1.4983 -1.95 

M3/m6 

F-A 1.2656 +21.5 1.2500 0 1.2500 0 1.2599 +13.7 

Diatonic C"'-E 1.2656 +21.5 12500 0 1.2500 0 1.2599 +13.7 
G-B 1.2656 +21.5 1.2500 0 1.2500 0 1.2599 +13.7 
D-P 1.2656 +21.5 1.2500 0 1.2500 0 1.2599 +13.7 

A-f!i 1.2656 +21.5 1.2656 +21.5 1.2500 0 1.2599 +13.7 

Chromatic E-G# 1.2656 +21.5 1.2656 +21.5 1.2500 0 1.2599 +13.7 
Eb_G 1.2656 +21.5 1.2656 +21.5 1.2500 0 1.2599 +13.7 
Bb_D 1.2656 +21.5 1.2656 +21.5 1.2500 0 1.2599 +13.7 
B_Eb 1.2486 -1.95 1.2642 +19.6 1.2800 +41.1 1.2599 +13.7 
P_Bb 1.2486 -1.95 1.2642 +19.6 1.2800 +41.1 1.2599 +13.7 

Enharmonic C#-F 1.2486 -1.95 1.2642 +19.6 1.2800 +41.1 1.2599 +13.7 
G#-C 1.2486 -1.95 1.2642 +19.6 1.2800 +41.1 1.2599 +13.7 

M6/m3 

F-D 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 

C-A 1.6875 +21.5 1.6667 0 1.6719 +5.4 1.6818 +15.6 
Diatonic 

G-E 1.6875 +21.5 1.6667 0 1.6719 +5.4 1.6818 +15.6 
D-B 1.6875 +21.5 1.6667 0 1.6719 +5.4 1.6818 +15.6 
A-P 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 
E-C# 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 

Chromatic B-G# 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 
Eb_C 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 
Bb_G 1.6875 +21.5 1.6875 +21.5 1.6719 +5.4 1.6818 +15.6 
P_Eb 1.6648 -1.95 1.6856 +19.6 1.7120 +46.4 1.6818 +15.6 

Enharmonic C#_Bb 1.6648 -1.95 1.6856 +19.6 1.7120 +46.4 1.6818 +15.6 
G#-F 1.6648 -1.95 1.6856 +19.6 1.7120 +46.4 1.6818 +15.6 

Table 1: Ratios and errors of harmonic intervals of various tuning systems. 
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cents flat. However, the enhannonic intervals are all badly off by 36 to 46 cents, which is almost a quarter 
of a whole step! The enhannonic fifth G# _Eb sounds so badly it is often referred to as "the wolf' tone. 

To get rid of all those tuning headaches, most contemporary instruments are tuned in the "equal 
1 

temperament" system, which has an equal ratio, 212 , of an half steps, i.e., all half steps are 100 cents 
apart. Thus all the perfect fifths are of equal ratio, as well as the thirds and sixths. However, in order to 
spread out the error, none of the chords (except for the octaves, of course) is perfect. It spreads out the 
nearly 24 cents flat of enhannonic fifth G# _Eb in Pythagorean system throughout the 12 fifth intervals, 
therefore each fifth is about 2 cents flat. With the fonnula, we can calculate the major thirds to be about 
14 cents sharp, since 

4 

212 
b == 12001og2 - ~ 13.7. 

5/4 

Similarly, all the major sixths are 15.64 cents sharp. Since the octaves are always tuned perfectly, the 
perfect fourths, minor sixths, and minor thirds are inversions (by raising the bottom notes one octave 
higher) of perfect fifths, major thirds, and major sixths. They are thus 2 cents sharp, 13.7 cents flat and 
15.6 cents flat respectively. 

The summary of the ratios and errors of each of the four tuning systems is listed in Table 1. In the 
table the twelve notes, C, C#, D, Eb, E, F, F#, G, G#, A, B, and Bb, in a chromatic scale are used. Other 
accidentals are considered enhannonic. For example, D# is considered the same note as Eb (Even though 
a violinist often plays them differently.). 

4. Tonal Optimization 

After the errors in different tuning systems are quantified, we can mathematically discuss the "best" for a 
specific piece of music. Many criteria for "best" tones can be proposed, we list some considerations in 
the following: 

(1) All octaves must be in perfect 2: 1 ratio, so that the ratio of any two pitches remains the same for 
all octaves. Thus the domain for the pitches can be restricted within one octave. 

(2) Only the errors in consonant intervals P5 (therefore P4), M3 (m6) and M6 (m3) are considered to 
be the factors that affect the music performance or enjoyment. 

(3) The value (time length) of each note is also taken into account. The longer the interval is played, 
the more important this interval is to the entire piece. 

(4) The importance of different intervals may vary according to each specific piece of music. 
(5) Even for intervals with same steps, one may be more important than others. For example, the M3 

interval C-E is certainly of more prime importance in musics composed in C Major than Db _Bb. 
For the purpose of discussion, we consider a very simple least-square type error function 

n 2 

g = L¢i(Oj) , 
i=l 

where ¢i 2 0 are the weights that depend on the value of the notes, the importance of that particular 
interval or chords, or other factors. The optimal perfonnance of a piece of music in the sense of "best" 
intonation can be considered as an optimization problem, 

ming(t,m), 
teS 

where S is the set of all feasible tuning systems, t is a particular tuning method to be chosen from S, m 
represents a particular piece of music to be perfonned with instrument(s) tuned in t. To simplify our 
examples and discussions, we consider the weight function only to be proportional to the value of the 
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function, i.e., we consider all harmonic intervals (P5, P4, M3, m3, M6, m6) to be of equal importance. 
Thus (A = Vi' where Vi is the time value of the notes of the interval. Certainly the time value depends on 

the variation of tempo during the performance. Again, we use a steady tempo in our examples. 
To illustrate the application of the error function, we considered two keyboard music pieces: J. S. 

Bach's Saraband in a from the First French Suite and Brahms' Waltz in Ab, Op. 39, No. 15. To save 
time, we only used each piece's first theme. In counting the intervals, a chord with three or more notes is 
counted as two or more intervals, with the base note against each of the rest notes in the chord. This is 
obviously much too simplified. However, we only use this as illustrations that are easy to understand. 
The tally of all the occurring harmonic intervals and value of each note are listed in Table 2. 

Frequency (Occurrence) J. S. Bach's Saraband in a Brahms' Waltz inA" 
of harmonic intervals 1/8 note '14 note Yz note 1/8 note '14 note 3/8 note 

P5/P4 C-G 2 1 
C#(Db) - G#(Ab) 1 2 

D-A 1 
F-C 1 1 2 
G-D 1 1 

G#(Ab) - Eb(D#) 11 1 
A-E 2 2 1 

Bb(A~-F I 
M3/m6 C#(Db) -F 1 2 

D - F"(Gb) 1 1 
Eb(D#) -G 2 1 

F-A 2 1 
G#(Ab)-C 1 8 6 3 
A-C"(D) 2 1 
Bb(A#) -D 1 1 

M6/m3 C-A 3 
C#(Db) - Bb(A#) 2 

D-B 1 
Eb(D#) - C 1 5 5 

F-D 2 1 
F#(Gb) - Eb(D#) 1 

G-E 1 1 
G#(Ab)-F 6 
Bb(A#) -G 2 2 1 

Table 2: Tally of harmonic intervals and note values in the theme of J. S. Bach's Saraband in afrom First French 
Suite, and Brahms , WaltzinAb, Gp. 39, No. 15. 

With the tally from Table 2 and the error (in cents) of each of the harmonic intervals in the four 
tuning systems from Table 1, we obtained the following results of the error function g or each of the two 
pieces of music. 

Pythagorean Just intonation Mean-tone Equal Temperament 
Bach 2548 1974 1279 1340 
Brahms 3736 4099 15733 2242 

From the result one may conclude that in general the equal temperament system works better in most 
cases. The reason is that the equal temperament spreads out the errors, while other systems may involve 
some of the chords that are off by 20 or more cents. 
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5. Method of Spectrum Shifting 

We have already seen that different tuning systems give the error function g different values. However, 
one can create numerous different tuning systems, each being tolerable. To search for a best system that 
minimizes the error function g for specific piece of music is too big a topic to be included in this article. 
Nevertheless we would go a little further than just examine the existing tuning systems. 

It is obvious that the same music transposed into different keys should have different values for the 
error function, since the errors (in cents) do not distribute uniformly for all the chords with the same 
interval, with the exception of the equal temperament system. Thus it is natural to consider redistributing 
those errors to minimize the error function. Again as an example for illustration, we consider a simple 
method - spectrum shifting, i.e., we shift the ordered error distribution list in haft steps on the chromatics 
scale bases. For example, in Pythagorean system, we can move the sacrificed enharmonic fifth G# _Eb one 
half-step up to A-E, or two half-steps up to Bb_F, etc. The error distributions in table 1 are referred as the 
spectrum of corresponding tuning system in "C". Thus each tuning system has 12 variations, they are in 
C, C#, D, Eb, E, F, F#, G, G#, A, Bb and B respectively. Table 3 lists the error distributions of just­
intonation system with all 12 shifts of spectrum. 

Spectrum C c ll D Eb E F f"I G Gil A Bb B 

P5JP4 C-G 0 0 0 0 -1.95 0 0 0 0 0 -21.5 0 
CIl_GII 0 0 0 0 0 -1.95 0 0 0 0 0 -21.5 
D-A -21.5 0 0 0 0 0 -1.95 0 0 0 0 0 
Eb_Bb 0 -21.5 0 0 0 0 0 -1.95 0 0 0 0 

E-B 0 0 -21.5 0 0 0 0 0 -1.95 0 0 0 
F-C 0 0 0 -21.5 0 0 0 0 0 -1.95 0 0 
f"I-cll 0 0 0 0 -21.5 0 0 0 0 0 -1.95 0 
G-D 0 0 0 0 0 -21.5 0 0 0 0 0 -1.95 

GII_Eb -1.95 0 0 0 0 0 -21.5 0 0 0 0 0 
A-E 0 -1.95 0 0 0 0 0 -21.5 0 0 0 0 
Bb_F 0 0 -1.95 0 0 0 0 0 -21.5 0 0 0 
B-f"I 0 0 0 -1.95 0 0 0 0 0 -21.5 0 0 

M31m6 C-E 0 +19.6 +21.5 +lz1.5 +19.6 0 +19.6 0 +21.5 +21.5 0 +19.6 
Cll-F +19.6 0 +19.6 +21.5 +21.5 +19.6 0 +19.6 0 +21.5 +21.5 0 
D-f"I 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 0 +19.6 0 +21.5 +21.5 
Eb_G +21.5 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 0 +19.6 0 +21.5 
E-GII +21.5 +21.5 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 0 +19.6 0 
F-A 0 +21.5 +21.5 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 0 +19.6 
f"I- Bb +19.6 0 +21.5 +21.5 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 0 

G-B 0 +19.6 0 +21.5 +21.5 0 +19.6 0 +19.6 +21.5 +21.5 +19.6 
GII-C +19.6 0 +19.6 0 +21.5 +21.5 0 +19.6 0 +19.6 +21.5 +21.5 
A-Cll +21.5 +19.6 0 +19.6 0 +21.5 +21.5 0 +19.6 0 +19.6 +21.5 
Bb_D +21.5 +21.5 +19.6 0 +19.6 0 +21.5 +21.5 0 +19.6 0 +19.6 
B_Eb +19.6 +21.5 +21.5 +19.6 0 +19.6 0 +21.5 +21.5 0 +19.6 0 

M61m3 C-A 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 
C*_Bb +19.6 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 0 

D-B 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 
Eb_C +21.5 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 

E-CII +21.5 +21.5 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 
F-D +21.5 +21.5 +21.5 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 0 +19.6 
f"I- Eb +19.6 +21.5 +21.5 +21.5 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 0 

G-E 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 0 +21.5 +21.5 +21.5 +19.6 
GII-F +19.6 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 0 +21.5 +21.5 +21.5 

A-f"I +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 0 +21.5 +21.5 
Bb_G +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 0 +21.5 
B-G# +21.5 +21.5 +21.5 +19.6 0 +19.6 +21.5 +21.5 +21.5 0 +19.6 0 

Table 3: Error distribution by spectrum shifting of Just Intonation system. 
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We use this method to exam the Brahnis' Waltz in Ab. The result is as following: 

Spectrum Shift of Just Intonation 
e I e# I D I Eb I ElF I ~ I G I G# I A I Bb I B 

Value of Error Function g 

4099 I 212 I 3852 I 1733 I 4644 I 4489 I 3390 I 3813 I 443 I 4108 I 4852 I 4429 

Since Brahnis' Waltz is in Ab, the shifting of error spectrum to Ab(G#), as expected, yields much 
better results. The error function shrank nearly 90% from the usual Just Intonation system (C-spectrum). 
However, it is interesting to notice that the lowest errors actually resulted from the spectrum in C#. This 
intricate aspect shows that the tonal optimization is not a trivial process, since so many variations of 
chords were involved in a composition. The key signature of a piece of music is a good indication what 
spectrum to use with a particular tuning system, but may not give the best result. A systematic 
mathematical study of the optimal tuning is necessary, and also is now practical with modem equipment 
and electronic gadgets. 

6. Conclusion 

We have discussed the classic tuning problem in music. The mathematical aspect of "best" tuning system 
(tonal optimization) was proposed. Simple illustrative examples were given to show the practicality and 
usefulness, though they may be considered a little too simplistic. 
Further study of tonal optimization can go beyond the classic tuning systems. We can even consider a 
"continuous" optimization by allowing the frequencies to vary continuously within a certain domain. For 
example, we can propose: 

min g~(x 1 m} , 
Xes 

where the tuning system t is a function of the twelve pitches of a chromatic scale, as denoted by x. If we 
use cents as the unit of the pitches, the components of the twelve-dimensional vectors are 
Xj = 1200 log 2 fi, where fi is the frequency of the ith note in the chromatic scale. The domain S can be a 

sphere in a twelve dimensional real space: IIx - Xo II ~ &0, where Xo represents a reference chromatic scale, 

e.g., that of the equal temperament tuning system, and 5 to 15 cents may be chosen as a reasonable 
tolerance value for &0. 

The further discussion of how to form the error function g is desired. Music performing artists and 
composers may have more say-sos in this aspect. How to assess the errors in a chord with multiple 
intervals, as well as the errors occurring incidentally between two intertwining themes, are subjected to 
human preferences. My over simplified examples are for illustration only, and should not be considered 
as an exclusion of artistry. 

With more and more widely used electronic digital instruments and mixing devices, optimizing 
tuning system for each piece of music and each performance has become feasible and easier. 
Mathematical theories and methods will become an integrated part of music performing. 
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