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Abstract 

Music theory has enjoyed a ubiquitous association with mathematics from its earliest beginnings. Among the 
abundant mathematical models that have inspired theories of music, combinatorics has played a continuous 
role since the seventeenth century, articulating musical spaces in which relations between elements of a 
discrete system can be articulated and quantified. This paper explores some representative theories of musical 
relations expressed in spatial terms using combinatorial techniques, revealing the abstract and profound ways 
in which mathematics, specifically combinatorics, informs music theory. 

1. Introduction 

''Nowhere do mathematics, natural sciences and philosophy permeate one another so intimately as in the 
problem of space" [1]. In this statement, Hermann Weyl depicts space as the primary locus of 
interconnection among three enormous domains of intellectual and scientific knowledge and endeavor. 
Weyl's designatitm of space as a problem reflects the difficulty of articulating the ontology of space, 
since the concept of space embraces both concrete and abstract or metaphorical meanings. Space may be 
broadly defmed as an extent in which objects or phenomena exist in relative positions, relations, or 
distances from one another. This expansive definition applies both to concrete spaces in which physical 
objects or beings reside, as well as to abstract or metaphorical spaces constructed in the human 
imagination, in which reside concepts, ideas,.and abstractions of physical objects or phenomena. 

While concrete space is profoundly important to the study of musical acoustics and cognition, 
which bear close ties with music theory, it is primarily in the realm of compositional and speculative 
music theory that metaphorical space as a component or product of rationalism emerges as intrinsic to the 
discipline: This paper explores the pervasiveness of abstract or metaphorical space in music theory 
through the frame of the mathematical subfield of combinatorics, the study of enumeration, groupings, 
and arrangements of elements in discrete systems. This brief study begins at the time of the incursion of 
mathematical combinatorics into music theory in the seventeenth century, almost immediately upon its 
debut in mathematical discourse, and surveys combinatorial techniques and attitudes in some seventeenth
and eighteenth-century writings on musical composition. From there the discussion turns to two little 
known theorists of the late nineteenth and early twentieth century, whose theories inductively develop 
algorithms from combinatorial techniques within the discrete, modular system of twelve pitch classes. 
These writings demonstrate an important shift in music-theoretical thought, in which combinatorial 
techniques, applied in the seventeenth and eighteenth centuries to surface musical relations and 
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configurations, later become hidden from view, and applied not to surface configurations, but to the 
elements from which those configurations-melodies and chords-are made. The paper concludes with 
some reflections on the place of combinatorics and the significance of metaphorical space in 
contemporary music theory. 

2. Marin Mersenne's Harmonie universelle 

Numerical models and rational systems of classification formed the infrastructure of speculative music 
theory from its earliest Pythagorean and Platonic sources to the Renaissance, reflecting the status of music 
as one of the four sciences of the medieval quadrivium (along with arithmetic, geometry, and astronomy). 
In the seventeenth century, the Scientific Revolution and the efflorescence of new branches of 
mathematics, especially probability theory and analytic geometry, irrevocably altered the nature of the 
interface between mathematics and music theory. Probably the earliest conspicuous manifestation of the 
new mathematical models in music theory was the adoption by renowned mathematician and music 
theorist Marin Mersenne (1588-1648) of mathematical processes informed by combinatorics in his 
landmark treatise, Harmonie universelle (1636-37). In the section on melody ("Livre second de chants" or 
"Book Two on Melodies"), he applied now classic combinatorial formulas to perform such operations as 
tabulating all 720 (= 6!) permutations of a hexachord (a collection of six notes). A portion of Mersenne's 
complete table, which occupies twelve pages of text, is shown in Figure 1. Mersenne also recorded the 
number of permutations of from 1 to 22 discrete pitches in the three-octave range of the diatonic gamut of 
his time (the last resulting in a colossal number of 22 digits), and performed more complex calculations 
such as the partitions of 22 or the multisets within the 22-pitch gamut comprising melodic figures that 
included note repetitions [2]. 

Mersenne's adoption of combinatorial methods reflected his mathematical expertise, and was 
motivated by his desire to demonstrate objectively the vast, yet computable number of possibilities for 
melodic construction. As a composer and musician, he found combinatorial means of explaining the 
rejection of some permutational possibilities on aesthetic grounds; for example, the melodic interval of 
the major sixth was regarded as improper, both ascending and descending, so among the 720 
permutations of the major hexachord, he calculated that 113 (= 2401720) were syntactically incorrect, 
because they included the notes ut (C) and la (A) in succession. That is to say, using combinatorics, he 
found a means to quantify with precision fundamental principles of melodic syntax. 

1 

-" ~ 

~-= .=-.+- -, 7 8 , 10 -- --- -... ... ... ... 
J1 u. 13 I", IS --- -

=p p- ... ... 
,6 17 18 1, 2.0 -

::ra...T. P:=" -... ... 

Figure 1: tabulation of the 720 permutations of 6 notes, excerpt 
(Mersenne, Harmonie universelle, 1636-37) 
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3. Ars combinatoria 

The view of musical materials as a fmite set of elements from which combinations are selected inspired a 
number of treatises and practical manuals on rational methods of musical composition in the later 
seventeenth and eighteenth centuries. Figure 2 illustrates an example of the 24 (=4!) permutations of a 
four-note melodic-rhythmic figure from Joseph Riepel's 1755 treatise Grundregeln zur Tonordnung [3]. 
Allusions to or explicit techniques derived from mathematical ars combinatoria became a familiar feature 
in eighteenth-century composition treatises, and were valued for the pedagogical benefits they offered to 
students of composition. Although the approach is mechanistic and the literary tone of these treatises can 
be light and diversionary, the underlying serious objective was to stimulate the musical imagination and 
transmit knowledge and skill in manipulation of musical materials. 
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Figure 2: melodic-rhythmic permutations (Riepel, Grundregeln zur Tonordnung, 1755) 

4. Musical circles 

A more abstract expression of the combinatorial disposition of musical space in eighteenth-century 
treatises is found in the circular diagrams used to depict relations of proximity and remoteness of keys for 
modulation within the system of 24 major and minor keys. While differing from each other in substance 
and presentation, such diagrams evince principles of Cartesian rationalism by identifying spatial relations 
in terms of relative distance from a referential point. Three "musical circles" from composition treatises 
of the first half of the eighteenth century are given in Figure 3. Johann David Heinichen was the first to 
discuss the theoretical implications of the musical circle. In his circular diagram from Neu erfundene und 
grundliche Anweisung'(1711), the fifth-related major (dur) keys proceed in counterclockwise motion in 
alternation with the fifth-related minor (moll) keys so that each major key is followed (counterclockwise) 
by its relative minor [4]. Johann Mattheson, in Kleine General-Bass Schule (1735), presents a more 
elaborate pattern of interweaving of the major and minor keys in his musical circle. (The text in the 
interior of Mattheson's circle reads "improved musical circle, which can lead around more easily through 
all keys than those previously invented.") Georg Andreas Sorge's multi-layered model of concentric 
circles in Vorgemach der musicalischen Composition (1745-47) separates the fifth-related major and 
minor keys, enumerating the two underlying circles of twelve fifths, and in the outer circles incorporates 
both Heinichen's and Mattheson's pairings of relative major and minor keys [5]. 
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Figure 3: musical circles of (a) Heinichen (1711); (b) Mattheson (1735); (c) Sorge (1747) 

5. Modular arithmetic and abstraction 

The eighteenth-century musical circles represent abstract relations within a discrete system (of 24 major 
and minor keys) that was implicitly modular, yet were still intended as a practical aid for musical 
composition by rendering visible the entire range and quality of relational possibilities for modulation. 
The formal entry of modular arithmetic into mathematics early in the nineteenth century, in conjunction 
with the widespread (though not universal) acceptance of equal temperament, in theory if not practice, 
initiated a line of speculative thought in music theory that extends through the twentieth century and 
continues to occupy a central position as a component of contemporary music theory. The combined 
agency of modular arithmetic and equal temperament enabled the formulation of theories of pitch 
structures based on algebraic methods and a recovery of pure speculation in music theory, that is, theory 
removed from the immediate concerns of musical practice and style. The twelve pitch classes of the 
equal-tempered system-in which all pitches are assigned to one of twelve classes based on octave and 
enharmonic equivalence-are strongly affiliated with theories of atonal and serial music of the twentieth 
century; their manifestation in the work of earlier authors not implicated in the revolution of harmonic 
language in the twentieth century reveals important aspects of the generality of abstract musical space; 

The earliest proponents of this new line of thought worked independently of each other, and were 
separated, voluntarily or involuntarily, from the mainstream of music theory and practice of their time. 
The explicit combinatorial mathematics that was integral to their theories did not conform to the 
conservatory-based norms and institutions of nineteenth- and early twentieth-century music instruction, so 
their work has generally not received much attention, and they remain rather obscure even among 
specialists in the discipl~e of music theory. Two of these independent thinkers will be discussed here: 
Anatole Loquin, writing iIl Bordeaux, France, and Ernst Bacon, writing in Chicago, U.S.A. 

5.1 Anatole Loquin (1834-1903). Anatole Loquin, in 1871, described his objective of calculating a 
complete inventory of all possible combinations of notes-triads and seventh chords, as well as 
formations resulting from the addition of non-harmonic tones. Loquin first classified all pitches into 
twelve congruence or equivalence classes (commonly known since the mid-twentieth century as pitch 
classes), using the modular analogy of a circle. (Loquin's concept of the circle was intrinsically different 
from the eighteenth-century musical circles of key relations discussed earlier, as his represented the 
twelve pitch classes, devoid of triadic or functional associations.) Treating the twelve pitch classes as a 
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discrete system, he used algebraic methods to determine the number of combinations of pitch classes in 
all cardinalities (the number of notes in a harmony) from 1 through 12, starting from one fixed, referential 
note or pitch class. Figure 4 shows Loquin's triangular table of combinations. (This table, as Loquin 
notes, is a reorientation of Pascal's famous triangle.) The total number of combinations of each 
cardinality from 1 to 12 is given along the right and bottom edges of the table. Along left edge are 
indicated the ordinal numbers assigned to the chords, from 1 to 2048 [6]. 
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Figure 4: table of combinations of pitch classes (Loquin, Apper~u sur la possibilite d 'etablir 
une notation representant...les successions harmoniques, 1871) 

Loquin outlined a manual process for computing the figures in the rows and columns of the table; 
the referential note is assigned the number 1; the number of 2-note combinations, 11, is computed by 
adding successively each of the remaining notes; the number of 3-note combinations, 55, is computed by 
adding, to each of the 11 2-note combinations in succession, each of the remaining notes above the 
highest note of each 2-note combination. The numbers of combinations for the remaining cardinalities are 
computed in the same way, each row and column of the table comprising an arithmetic progression. By 
speaking of summing "notes" rather than numbers, and by not providing the algebraic equations to 
symbolize the calculations of the entries on his table, Loquin's terminology and methodology may seem 
to lack mathematical rigor, but it is likely that he attempted to simplify the information, suppressing the 
extent of its mathematical foundation in arithmetic progressions, in order to include mathematically 
untrained musicians and musical scholars in his readership. 

Loquin's total of 2048 combinations is the result of a recursive algorithmic process in which 
combinations of each cardinality are generated by systematic accretion to the already computed 
combinations of the next smaller cardinality. His results, although internally consistent, reveal that he was 
unaware of the group-theoretic basis of the system. For example, his table omits the important cardinality 
of 0, the empty set (t), that is required to balance the complementary relationships of the system; the 
identical totals of combinations in pairs of cardinalities in Loquin's table do not match up with 
complementary cardinalities within the aggregate of 12. With a little manipulation, however, Loquin's 
numbers of combinations within each cardinality can be shown to correlate to the correct figures, 
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computed without recourse to a referential pitch class. His grand total of 2048 combinations is exactly 
half of the total number of pitch-class (pc) sets, 4096 (=212), in the universe of 12 pitch classes. Figure 5 
shows the number of sets in each cardinality from 0 to 12 (the number of combinations of 12 elements 
taken k at a time, where k is the cardinality) as well as the number of equivalence classes under 
transposition within each cardinality. The number of sets of each cardinality can be calculated by 
summing adjacent totals in Loquin's table, counteracting the effect of the referential pitch class. That is, 
the total of 12 monads (single pitch classes) result from summing Loquin's figures 1 and 11; the total of 
66 dyads (2-note sets) results from summing 11 and 55; the total of 220 trichords (3-note sets) results 
from summing 55 and 165; the 495 tetrachords (4-note sets) from summing 165 and 330; and so on. 

Cardinality 0 1 2 3 4 5 6 7 8 9 10 11 12 
# of pc sets 1 12 66 220 495 792 924 792 495 220 66 12 1 
# of equivalence classes 1 1 6 19 43 66 80 66 43 19 6 1 1 

Figure 5: numbers of pitch-class (pc) sets and transpositionally equivalent pc-set classes by cardinality 

5.2 Ernst Bacon (1898-1990). Across the Atlantic and a few decades later, Ernst Bacon, a young 
American piano student in Chicago, similarly employed combinatorial methods within the modular 
system of 12 pitch classes in an unusual monograph entitled "Our Musical Idiom" (1917) [7]. Bacon 
bypassed the process of unraveling all possible combinations of notes or pitch classes by conceiving of 
sets of pitch classes in terms of the intervals separating them. He developed an elegant algorithm that 
efficiently amalgamates combinations of pitch classes into equivalence classes whose members are all 
related by transposition. (That is, they contain exactly the same succession of intervals, but begin on a 
different note or pitch class.) The algorithm consists of three steps: (I) the intervals between successive 
pitch classes are conceptually arranged as if around the perimeter of a circle marked with 12 equidistant 
points (the distance between adjacent points representing a semitone) in order to render any harmony in a 
space smaller than an octave; (2) the interval succession, which must always sum to 12 (including the 
complementary interval that returns to the point of origin), is recorded; (3) cyclic permutations of interval 
successions are eliminated, as these represent transpositions-reorderings of the same interval succession. 
Following these steps, each remaining, unique, permutation of the interval succession represents a 
harmony, a class of transpositionally equivalent pitch-class sets. Interval successions that share the same 
terms (but are not cyclic permutations) are grouped together as, for example, the successions <1-1-1-4-5>, 
<1-1-1-5-4>, <1-1-4-1-5>, and <1-1-5-1-4>, representing four five-note harmonies [8]. Bacon's notation 
of a representative of each of the four harmonies in this combination is shown in Figure 6. (Note that he 
omits the complementary interval completing the octave.) 

t ,1,1, Itl 1,lkl' I, pl'5: I p a:: II 
1-1-1-4 1~1-1-5. 1-t-4-1 1-t-5-1 

Figure 6: four five-note harmonies formed from non-cyclic .permutations 
of one combination of intervals (Bacon, "Our Musical Idiom," 1917) 

Bacon's table showing his computations of the 43 transpositionally equivalent classes of four
note harmonies, or tetrachords, is given in Figure 7. On the left side of the table appears the tabulation of 
intervals (from 1 to 9 semitones, or from a minor second to a major sixth) comprising each combination. 
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Just to the right of the middle of the table appears the formula that applies to each combination 
(depending on such circumstances as whether the component intervals are unique or whether there are 
repetitions). Finally, the far right column gives the total number of harmonies (unique, non-cyclic 
permutations) within each combination, and these are shown to sum to 43. Bacon provides analogous 
tables for all cardinalities from 2 through 10. Although he notes some large-scale symmetries within the 
system, like Loquin, he does not pursue the group-theoretical implications of his data. 
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Figure 7: computation of the 43 transpositionally equivalent tetrachord classes 
(Bacon, "Our Musical Idiom," 1917) 

6. Conclusion 

Both Loquin and Bacon were driven by an impulse to construct a taxonomy of all possible combinations 
of notes or pitch classes within a discrete system of 12 objects, even though many of the available 
combinations were not syntactically acceptable in the compositional practice of their time. Certainly these 
authors were motivated by the increasing chromaticism of later nineteenth- and early twentieth-century 
music, which introduced sonorities that were unexplainable in familiar theoretical terms, but their 
mathematical methods transcended music-stylistic boundaries and theoretical conventions. While Loquin 
and Bacon are unusual and intriguing for their independence from mainstream currents in music theory, 
their role in this study is to document the tenacity in music theory of abstract or metaphorical space 
articulated through combinatorial mathematics. 

The atonal revolution in harmonic language in the early twentieth century and the evolution of the 
twelve-tone or serial method of composition, spearheaded by Arnold Schoenberg and extended by others, 
brings a new chapter to the study of the increasingly more significant role played by combinatorics in 
music theory. While the limited scope of this paper makes it impossible to address this new chapter in any 
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depth, it can be said that the compulsion to classify all possible combinations of pitches within the 
discrete, modular system of twelve pitch classes proved to be much more than a curiosity. A taxonomy of 
equivalence classes in the universe of 4096 pitch-class sets is entrenched as a foundational component of 
contemporary atonal music theory, fIrst codifIed by Allen Forte, and relations and transformations within 
equivalence classes of pitch-class sets are shown to be fIrmly grounded in combinatorial mathematics as 
well as in set theory and group theory [9]. The spatial metaphor maintains a strong presence in music 
theory in analogies of geometric transformations and transformations of pitch-class sets, in the writings of 
Robert Morris on compositional and other musical spaces [10], and in the theories of generalized musical 
intervals and transformational networks of David Lewin [11]. 

In accord with the Weyl quotation that introduced this essay, space constitutes an important point 
of interdisciplinary intersection, exemplifIed vividly in the powerful resource of combinatorics at the 
crossroads of music theory and mathematics. 
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