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More Images

We provide some additional illustrations for the example path expression used in the paper:

A:-|>

B:A>a>

B3

Figure 1 shows four stages of building up the path, as well as the full path using the same coloring.

Figure 1: Subpaths highlighted for A:-|>, A>, and A>a (in first row), and B:A>a> and B3 (in second row).
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Figure 2 shows another FCC path for the example path expression. When all joint angles are constrained to
|> (right or obtuse), excluding = (straight), and the travel distance is limited to 13%, there are only two paths
generated. These are Figure 1 (also shown in the paper) and Figure 2 here.

Figure 2: Another solution to the example path expression (left: in marble, computer generated image;
right: with subpaths highlighted).

Figure 3 shows a piecewise linear rendering of Opus 185131, the knotted FCC spiral. Here the match with
the path expression is easier to make:

A:--1.2_1.2_1.3_1.3_1.3_1.4_1.4_1.4_1.5

AA%

Figure 3: Opus 185131 (piecewise linear): in marble (computer generated image).
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Other Turtle Geometry Specializations

In [2], the following four abbreviations are introduced

𝑇𝑑 = Move(𝑑); Turn(90◦) (1)
𝑅𝑑 = Move(𝑑); Roll( 90◦); Turn(90◦) (2)
𝐿𝑑 = Move(𝑑); Roll(−90◦); Turn(90◦) (3)
𝑃𝑑 = Move(𝑑); Roll(180◦); Turn(90◦) (4)

The names were chosen because they have a mnemonic value, when using bevelled square beams and miter
joints to construct the path (see Figure 4). Using this DSL, all paths in the Simple Cubic lattice can be
described as sequences of 𝑇 , 𝑅, 𝐿, and 𝑃 steps. For instance, Opus 951465 (Figure 2 in the paper), can be
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𝑇𝑑 has a trapezoid as projection 𝑅𝑑 makes right-handed spirals
(mirror image of 𝐿𝑑)
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𝑃𝑑 has a parallelogram as projection 𝐿𝑑 makes left-handed spirals
(mirror image of 𝑅𝑑)

Figure 4: Shapes of square beams bevelled for miter joints

described by the following expression, where exponentiation indicates repetition:(
𝐿1; 𝑅5; (𝑅6)2 ; 𝐿3 ; 𝑅1; 𝐿5; (𝐿6)2 ; 𝑅3

)3
(5)

making 30 steps: a three-stranded right-hand spiral of 5 segments per strand (𝐿1; 𝑅5; 𝑅2
6; 𝐿3), interwoven

with a three-stranded left-hand spiral also of 5 segments per strand (𝑅1; 𝐿5; 𝐿2
6; 𝑅3). It is congruent to its

mirror image, that is, turning it upside-down is equivalent to reflecting it. This description can be directly
matched to the path expression given in the paper, by taking 𝐴 = 𝐿1; 𝑅5; (𝑅6)2 ; 𝐿3:

A:--1.5-1.6-1.6-1.3

B:AA%

B3

Also in [2], the following abbreviations are defined:

𝑅′
𝑑 = Move(𝑑); Roll( 60◦); Turn(arccos 1/3)
𝐿′𝑑 = Move(𝑑); Roll(−60◦); Turn(arccos 1/3)

3



where arccos 1/3 ≈ 70.5◦. This language is used to describe BCC paths with obtuse angles. These are nicely
realized with beams having an equilateral triangle as cross section. Opus 125707 (Figure 4 in the paper) can
be described by (

𝐿′1;
(
𝑅′

2
)2 ; 𝐿′1; 𝑅′

2 ; 𝐿′2; 𝑅′
1;
(
𝐿′2

)2 ; 𝑅′
1

)2
(6)

making 32 steps. This description can be directly matched to the path expression given in the paper, by taking
𝐴 = 𝐿′1;

(
𝑅′

2
)2 ; 𝐿′1; 𝑅′

2:

A:-8

B:Aa

BB

These notations are precursors of Anton’s Path Language.
In [4], a DSL is defined for 3D paths based on two global constants, viz. the turn angle 𝜙 and the roll

angle 𝜓 and the following abbreviations:

+ = Move(1); Roll(+𝜓); Turn(𝜙)
− = Move(1); Roll(−𝜓); Turn(𝜙)

Koos Verhoeff typically fixed 𝜓 = 90◦ because that corresponds to the rotational symmetry of a beam with a
square cross section. Paths described in this DSL are usually not lattice paths, and it is not obvious for which
turn angles 𝜙 such a path is properly closed (also see [1][3]).

Finally, [5] defines a DSL to describe obtetrahedrille constructions. The turtle then travels in a sublattice
of FCC. The DSL has a history mechanism to allow for branching.

More Information about the Cubic Lattices

Labels:

• 𝑂: origin (current point)
• 𝑃: previous point
• 𝑆: straight
• 𝐴 through 𝐾: other next points (below, generically referred to as 𝑄)
• 𝐴′ through 𝐾 ′, and 𝑃′: pre-previous points (below, generically referred to as 𝑄′)

Measuring angles:

• Turn angles 𝜙 are measured when moving 𝑃 → 𝑂 → 𝑄, such that 0 ≤ 𝜙 < 180◦.
In general, turn angle 𝑃 → 𝑂 → 𝑆 is 0.

• Roll angles 𝜓 are measured when moving 𝑄′ → 𝑃 → 𝑂 → 𝑄, such that −180◦ < 𝜓 ≤ 180◦. The
roll angle is the (directed) angle from the normal vector of the plane spanned by 𝑄′ → 𝑃 → 𝑂 to
the normal vector of the plane spanned by 𝑃 → 𝑂 → 𝑄. The normal vector is determined via the
right-hand rule; that is, for the first plane it equals (𝑃 −𝑄′) × (𝑂 − 𝑃).
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Simple Cubic (SC)

Figure 5: Simple cubic lattice, some points and directions
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Figure 6: Simple cubic lattice, projected in direction of 𝑃𝑂, showing torsion angles

• Number of directions: 5 (unconstrained), 4 (right angle)

• Turn angles: 0 (straight: 𝑃𝑂𝑆), 90◦ (𝑃𝑂𝐴, 𝑃𝑂𝐵, 𝑃𝑂𝐶, 𝑃𝑂𝐷)

• Roll angles: 0, ±90◦, 180◦

5



Face-Centered Cubic (FCC)

Figure 7: Face-centered cubic lattice, some points and directions
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Figure 8: Face-centered cubic lattice, projected in direction of 𝑃𝑂, showing torsion angles

• Number of directions: 11 (unconstrained), 4 (acute), 2 (right angle), 5 (obtuse, incl. 1 straight)

• Turn angles: 0 (straight: 𝑃𝑂𝑆), 60◦ (𝑃𝑂𝐺, 𝑃𝑂𝐻, 𝑃𝑂𝐽, 𝑃𝑂𝐾), 90◦ (𝑃𝑂𝐵, 𝑃𝑂𝐸), 120◦ (𝑃𝑂𝐴, 𝑃𝑂𝐶,
𝑃𝑂𝐷, 𝑃𝑂𝐹)

• Roll angles: 0, arctan
√

2 ≈ 54.7356◦ (e.g. 𝐴′𝑃𝑂𝐵), arccos 1/3 ≈ 70.5288◦ (e.g. 𝐴′𝑃𝑂𝐹), and
supplements
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Body-Centered Cubic (BCC)

Figure 9: Body-centered cubic lattice, some points and directions
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Figure 10: Body-centered cubic lattice, projected in direction of 𝑃𝑂, showing torsion angles

• Number of directions (incl. straight): 7 (unconstrained), 3 (acute), 4 (obtuse, incl. straight)

• Turn angles: 0 (straight: 𝑃𝑂𝑆), arccos 1/3 ≈ 70.5288◦ (𝑃𝑂𝐵, 𝑃𝑂𝐷, 𝑃𝑂𝐹), arccos 1/
√

3 ≈ 109.471◦
(𝑃𝑂𝐴, 𝑃𝑂𝐶, 𝑃𝑂𝐸)

• Roll angles: 0, ±60◦, ±120◦
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