
Koos’ Star Exists: Proof Outline

Tom Verhoeff

Figure 1: Koos’ Star

The (narrow) claim (see Fig.1) is as follows.

There exists a mathematical object with the following properties:

1. It is a closed polygonal path in 3D space of 16 segments.

2. All the segments have the same length.

3. All the angles α between adjacent segments are the same,
and 0 < α < π/2.

4. All torsion angles ψ (see below) equal π/2 in absolute value.

5. The signs of the torsion angles are (++−−)4.

To define the torsion angle of a segment in a closed polygonal path, consider
that segment BC and the two adjacent segments AB and CD. Then the
torsion angle of BC is the directed angle from the plane spanned by ABC
to the plane spanned by BCD, using the right-hand rule with respect to the
directed rotation axis AB.
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Here is the outline of a proof, with a bit more detail than in [1].

1. Relax the problem, by considering the 3D turtle program KS (φ):(
M(1);R(

π

2
);T (φ);M(1);R(

π

2
);T (φ);M(1);R(−π

2
);T (φ);M(1);R(−π

2
);T (φ)

)4
involving the following turtle commands operating on state (v, h, n)

of position, heading, and normal vectors.

• M(d) move along h by distance d: v 7→ v + dh;

• R(ψ) roll about h by angle ψ: n 7→ n cosψ − (n× h) sinψ;

• T (φ) turn about n by angle φ: h 7→ h cosφ+ (n× h) sinφ.

2. The goal now is to prove that a turn angle φ exists such that KS (φ)
closes properly, that is, the turtle returns to its initial state after ex-
ecuting the program. Then π − φ = α above, and the torsion angles
equal ±π/2 according to the pattern (++−−)4.

3. When a turtle program is properly closed, the shape of the path gener-
ated will not change when cyclicly rotating the commands. See Cyclic
Permutation Congruence (CPC) Theorem in [2].

4. There are various algebraic properties of turtle commands (see [2]):

T (φ1 + φ2) ≡ T (φ1);T (φ2)

M(d);R(ψ) ≡ R(ψ);M(d)

5. Rewrite KS (φ) as(
M(1);R(π2 );T (φ);M(1);R(π2 );T (φ);

M(1);R(−π
2 );T (φ);M(1);R(−π

2 );T (φ)
)4

c≡ { T (φ) = T (
φ

2
);T (

φ

2
) and CPC Theorem }(

T (φ2 );M(1);R(π2 );T (φ);M(1);R(π2 );T (φ2 );

T (φ2 );M(1);R(−π
2 );T (φ);M(1);R(−π

2 );T (φ2 )
)4

≡ { M(1);R(ψ) = R(ψ);M(1) }(
T (φ2 );M(1);R(π2 );T (φ);M(1);R(π2 );T (φ2 );

T (φ2 );R(−π
2 );M(1);T (φ);R(−π

2 );M(1);T (φ2 )
)4

6. Define the reflection refl ′(p) ( = refl in [1]) of a turtle program p by

refl ′(M(d)) = M(d)

refl ′(R(ψ)) = R(−ψ)

refl ′(T (φ)) = T (φ)

refl ′(p; q) = refl ′(q); refl ′(p)
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7. Reflection Lemma: The program p; refl ′(p) produces a path that is
mirror symmetric with as reflection plane the plane passing through
the final position after p, and perpendicular to the final heading after p.
Moreover, if the turtle’s attitude after p; refl ′(p) is h′, n′ (heading, nor-
mal), then −h′, n′ is the mirror image of the initial attitude. (See [2,
§5.2] for a similar lemma, and Appendix A below for details.)

8. Observe that for turtle program p, we have refl ′(refl ′(p)) = p.

9. We can write KS (φ) = (P (φ); refl ′(P (φ)))4 with

P (φ) = T (
φ

2
);M(1);R(

π

2
);T (φ);M(1);R(

π

2
);T (

φ

2
)

From now on, we leave the parameter of P implicit.

10. Now apply the Reflection Lemma twice:

• to P ; refl ′(P )

• to refl ′(P );P = refl ′(P ); refl ′(refl ′(P ))

11. Thus we find that KS starts as P , followed by a mirror image refl ′(P ),
which is in turn followed by its mirror image refl ′(refl ′(P )) = P .

12. When KS (φ) is properly closed, we see that it has those two reflections
as symmetry operations. Hence, it has a rotational symmetry with a
rotation angle that is twice the angle between the reflection planes.

And conversely, when the angle between those two reflection planes
equals π/4, program KS (φ) =

(
P ; refl ′(P )

)4
will close properly.

13. Let θKS (φ) be the rotation angle between the initial and final state
(and in particular, its headings) of P ; refl ′(P ), as function of φ.

Observe that (also see Fig. 2):

• Function θKS (φ) is continuous (also see Step 14).

• θKS (0) = θKS (π) = 0

• θKS (π/2) = 2π/3 (this path walks in the simple cubic lattice)

Hence, by the Intermediate Value Theorem, there exists a φ with 0 <
φ < π/2 and also a φ with π/2 < φ < π such that θKS (0) = π/2.

14. In fact, from P we can calculate (using Mathematica):

cos 2θKS (φ) = (3 + cos 2φ)/4

θKS (φ) = 2 arccos((3 + cos 2φ)/4)

Thus, we have the following two approximate solutions for φ: 49.9396◦

and 130.0604◦. The latter corresponds to Koos’ Star. It is now also
clear that these two solutions sum to 180◦.

3



30 60 90 120 150 180
ϕ

30

60

90

120

θ

rotation angle θ of prp(ϕ, 90°, ++--)

Figure 2: Plot (in blue) of rotation angle θKS (φ) for P (φ) of Koos’ Star

The equation to solve is

(3 + cos 2φ)/4 = cosπ/4 =
1

2

√
2

It has as solutions

φ = ±1

2
arccos(−3 + 2

√
2)

Summary (in hindsight)

One way of comparing our original approach in [3] to that of [1] is as follows.
In 2009, we were looking for solutions to this equation in φ: final state of((

M(1);R(
π

2
);T (φ)

)2
;
(
M(1);R(−π

2
);T (φ)

)2)4

equals initial state, yielding a system of three complicated vector equations.

In 2021, we are looking for solutions to the equation in φ: angle θ/2 between
initial heading and final heading after(

T (
φ

2
);M(1);R(

π

2
);T (

φ

2
)

)2

equals 45◦ (these headings are the normal vectors of the reflection planes).
The latter is a single simple scalar equation, when using the vector dot
product of initial and final heading to get cos θ2 . Also see Fig. 3.
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Figure 3: (+++−−−)4: The 2009 view (left) and the 2021 view (right)

Generalization

This argument can be generalized. Let P equal

T (
φk
2

);M(d1);R(ψ1);T (φ1); . . . ;M(dk);R(ψk);T (
φk
2

)

for distances di and angles ψi, φi with 1 ≤ i ≤ k. Then P defines a rotation
angle θ, and

(
P ; refl ′(P )

)n
is properly closed if and only if nθ is a multiple

of 2π. Moreover, this θ is a continuous function of each of the parameters.
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A Reflection Lemma

We prove this by reduction to the reflection property of [2, §5.2]. In [2], the
following definitions and properties are given.
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• Turtle program transformer rev is defined by

rev(M(d)) = M(−d)

rev(R(ψ)) = R(−ψ)

rev(T (φ)) = T (−φ)

rev(p; q) = rev(q); rev(p)

It is an involution (its own inverse).

• Turtle program transformer refl is defined by

refl(M(d)) = M(d)

refl(R(ψ)) = R(−ψ)

refl(T (φ)) = T (φ)

refl(p; q) = refl(p); refl(q) [ 6= refl ′(p; q)]

It is an involution.

• rev and refl commute: rev ◦ refl = refl ◦ rev .

• Half loop H = T (π);R(π) = R(π);T (π), with properties

H;H = I
H;M(d) = M(−d);H
H;T (φ) = T (−φ);H
H;R(ψ) = R(−ψ);H

Let’s define turtle program transformer flip by flip(p) = H; p;H. This flips
the signs of all arguments in the commands in the program. This transformer
commutes with both rev and with refl .

The turtle program transformer refl ′ defined under 6, satisfies

refl ′ = refl ◦ flip ◦ rev

The reflection property in [2, §5.2] states that

the programs p and refl(p) produce paths that are each other’s
mirror image w.r.t. the (x, y)-plane. This lemma should have
been extended with the claim that the state after p, say (h, n),
and the state after refl(p), say (h′, n′), are related as follows: h
and h′ are each other’s reflection in the (x, y)-plane, and n and
−n′ are each other’s reflection in the (x, y)-plane.

Consequently (by property of H, which equals the composition of two re-
flections: in (x, y)-plane and in (y, z)-plane),
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the programs p and H; refl(p);H produce paths that are each
other’s mirror image w.r.t. the (y, z)-plane, and the final states
are related as follows: h and −h′ are each other’s reflection in
the (y, z)-plane, and n and n′ are each other’s reflection in the
(y, z)-plane.

Hence, by taking rev(p) for p in the preceding, we have

the programs rev(p) and H; refl(rev(p));H produce paths that
are each other’s mirror image w.r.t. the (y, z)-plane, and the final
states are related as follows: h and −h′ are each other’s reflection
in the (y, z)-plane, and n and n′ are each other’s reflection in the
(y, z)-plane.

Now observe that H; refl(rev(p));H = refl ′(p). So, we conclude

the programs rev(p) and refl ′(p) produce paths that are each
other’s mirror image w.r.t. the (y, z)-plane, and the final states
are related as follows: h and −h′ are each other’s reflection in
the (y, z)-plane, and n and n′ are each other’s reflection in the
(y, z)-plane.

And this is equivalent to the Reflection Lemma under 7.

B Mathematica Code

Here, we present the Mathematica code to obtain closed formulas. The turtle
state is encoded in a list of three vectors: position, heading, and normal.

istate = {{0, 0, 0}, {1, 0, 0}, {0, 0, 1}}; (* initial state *)

{pos, hdg, nrm} = {1, 2, 3}; (* indices to extract parts of a state *)

move[d_][{position_, heading_, normal_}] :=

{position + d heading, heading, normal}

turn[phi_][{position_, heading_, normal_}] :=

{position, Cos[phi] heading + Sin[phi] Cross[normal, heading], normal}

roll[psi_][{position_, heading_, normal_}] :=

{position, heading, Cos[psi] normal - Sin[psi] Cross[normal, heading]}

compose[{}][state_] := state

compose[{step_, t___}][state_] := compose[{t}][step[state]]
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segment[d_, psi_, phi_] :=

compose[{move[d], roll[psi], turn[phi]}]

factor[c_] := Switch[c, "+", +1, "-", -1] (* s is a string of signs *)

rollsignstoprogram[s_, d_, phi_, psi_] :=

compose[Table[segment[d, factor[c] psi, phi], {c, Characters[s]}]]

A formula for the final position after (+−)3 as function of turn angle phi is
obtained by:

rollsignstoprogram["+-+-+-", 1, phi, Pi/2][istate][[pos]] // TrigReduce

which produces

{1/16 (16 + 26 Cos[phi] + 24 Cos[2 phi] + 21 Cos[3 phi] + 8 Cos[4 phi] + Cos[5 phi]),

1/8 (6 Sin[phi] + 10 Sin[2 phi] + 6 Sin[3 phi] + Sin[4 phi]),

1/16 (18 Sin[phi] + 16 Sin[2 phi] + 19 Sin[3 phi] + 8 Sin[4 phi] + Sin[5 phi])

}

To find the formula for proper closure of (++−−)4, we define (cf. Step 9
above)

P[phi_] := compose[{turn[phi/2],

move[1], roll[Pi/2], turn[phi],

move[1], roll[Pi/2], turn[phi/2]}]

thetaKS[phi_] := 2 ArcCos[Dot[istate[[hdg]], P[phi][istate][[hdg]]] // TrigReduce]

thetaKS[phi] (* angle spanned by ++-- as function of phi *)

which produces

2 ArcCos[1/4 (3 + Cos[2 phi])]

Thus, we need to solve for phi to make this equal to π/2:

Solve[thetaKS[phi] == Pi/2, phi, Reals]

which produces{{
phi→ 1

2

(
2πc1 − cos−1

(
2
√

2− 3
))

if c1 ∈ Z
}
,
{

phi→ 1
2

(
cos−1

(
2
√

2− 3
)

+ 2πc1
)

if c1 ∈ Z
}}

Numerically:

With[{phi = 1/2 ArcCos[-3 + 2 Sqrt[2]]/Degree}, {phi, 180 - phi}] // N

yielding

{49.9396, 130.06}
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