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Abstract  

Mathematical knots are severely restricted in the symmetries they can exhibit; they cannot assume the symmetries of 
the Platonic solids.  An approach is presented that forms tubular knot sculptures that display in their overall structure 
the shapes of regular or semi-regular polyhedra: The knot strand passes along all the edges of such a polyhedron once 
or twice, so that an Eulerian circuit can be formed.  Results are presented in the form of small 3D prints. 

  
 

1. Introduction 
Several artists have used tubular representations of mathematical knots and links to make attractive 
constructivist sculptures (Figure 1).  Often, they try to make these sculptures as symmetrical as possible 
(Figures 1c, 1d); but there are restrictions how symmetrical a mathematical knot can be made.  Section 2 
reviews the symmetry types that are achievable by mathematical knots.  Subsequently I explore ways in 
which I can design knot sculptures so that their overall shape approximates the higher-order symmetries 
exhibited by the Platonic and Archimedean solids. 

               
                       (a)                                          (b)                                   (c)                                    (d)   

Figure 1:  Knot sculptures:  (a) de Rivera: “Construction #35” [2].  (b) Zawitz: “Infinite Trifoil” [11]. 
 (c) Escher: “The Knot” [3].  (d) Finegold: “Torus (3,5) Knot” [4]. 

 
2. The Symmetries of Knots 

All finite 3-dimensional objects fall into one of 14 possible symmetry families.  First, there are the seven 
roughly spherical Platonic symmetries (Figure 2) derived from the regular and semi-regular polyhedra.  The 
first three are:  Td, the tetrahedral symmetry; Oh, the octahedral (or cube) symmetry; and Ih, the icosahedral 
(or dodecahedral) symmetry.  If we suppress all mirror symmetries by placing chiral markings on all the 
faces, we obtain the oriented versions T, O, and I, of these symmetries.   Finally, there is Th the symmetry 
of the oriented double-tetrahedron, the aligned combination of two tetrahedra with opposite orientation. 

The next seven families are the prismatic symmetries.  They all have a dominant n-fold rotational 
symmetry axis, where n can range from 1 to infinity.  They are distinguished by what additional symmetry 
operations they allow.  The various possibilities are most easily understood by starting with the seven 2-
dimensional frieze symmetries (Figure 3).  A sequence of n cells of such a frieze is then wrapped around a 
cylindrical or prismatic body to produce n-fold rotational symmetry around the dominant axis. 
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 Td                     Oh                     Ih                      T                    O                      I                      Th 

       *332                 *432                  *532                 332                 432                   532                  3*2 
Figure 2:  The Platonic symmetries:  (top) Schönflies notation;  (bottom) Conway’s orbifold notation. 

 
If there are no other symmetry operations possible beyond the rotations around the dominant axis, we have 
the cyclic family Cn (Figure 3a, top).  To this rotational symmetry, we may add different mirroring 
operations.  If we add a mirror operation along the dominant axis, we obtain family Cnh.  If instead we add 
n mirror planes containing the dominant axis, we obtain family Cnv.  Finally, there is a way of combining 
rotation and a mirror operation to produce glide symmetry.  If we can rotate a shape through 180°/n degrees 
and apply mirroring along the dominant axis to bring the shape into coincidence with itself, we have the 
family S2n.  

If, in addition to the rotational symmetry around the dominant axis, there are n 2-fold rotation axes 
perpendicular to the dominant rotation axes (shown by blue dots in Figure 3b), we are facing a member of 
the dihedral family.   If we start with the basic dihedral symmetry Dn (Figure 3b, top) and add to it either 
the horizontal or the vertical mirror planes, as we did for the Cn family, we obtain Dnh symmetry, which 
contains both these mirroring operations; this happens because of the n 2-fold rotation axes.  But there is 
also a dihedral family that exhibits glide symmetry, this is called Dnd.  Through this paper, I will use the 
Schönflies notation for the various symmetries.  There are several other symmetry notations.  For a broader 
perspective, I have also included Conway’s orbifold notation in Figures 2 and 3. 

   
                                         (a)                                                                                    (b) 

Figure 3:  Frieze / prismatic) symmetries:  (a) the 4 cyclic families,  (b) the 3 dihedral families. 
 
When trying to design tubular sculptures representing mathematical knots with as much symmetry as 
possible, one runs into some fundamental limitations concerning the symmetries that knots can exhibit.   
Because mathematical knots must consist of a single closed space-loop that must not self-intersect, they 
can only fit into five of the prismatic families (Figure 4a), as Grünbaum et al. have shown.  The proof starts 
with a demonstration that no knot can exhibit more than one rotational symmetry axis with a valence higher 
than two [5].   

If we constrain ourselves to consider only non-trivial prime knots, then they will all belong to just the 
three prismatic families: Cn, Dn, and S2n.  Thus, specifically, prime knots cannot exhibit mirror symmetry.  
Figures 4b and 4c illustrate this point.  Figure 4b shows an attempted construction of a mirror-symmetric 
knot.  But with just two edges connecting the two mirrored parts, this constitutes a compound knot.  To turn 
this into a prime knot, at least one more pair of connecting edges needs to be added.  If one tries to do this 
while keeping the overall figure mirror symmetric, one always obtains a multi-component link rather than 
a single mathematical prime knot (Figure 4c). 
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                                      (a)                                                          (b)                                   (c) 

Figure 4:  Limitations of knot symmetries: (a) as discussed by Grünbaum [5].   
(b,c) Exclusion of mirror symmetry in non-trivial prime knots. 

 
3. Knots Based on (Semi-)Regular Polyhedra 

To make knot sculptures that appear to be highly symmetrical, let’s step away from the approach of directly 
constructing a knot based on one of the three allowed prismatic frieze groups.  Instead, let’s look at a process 
that starts with the Platonic or Archimedean solids ‒ even though we know that the final knot cannot 
possibly have the full symmetry of these polyhedra.  My aim is to make sculptures, where the overall 
structure is inspired by a wire-frame representation of a Platonic solid, and where the knot strand runs along 
all the edges of such a regular polyhedron.  This creates “polyhedral-edge” or “wire-frame” knot sculptures. 

Edge Knot Based on the Octahedron 
To obtain a valid knot path, I first try to find a closed circuit on the polyhedron edges with as much 
symmetry as possible.  An Eulerian circuit requires that all the vertices have even valence.  Among the five 
Platonic solids, only the octahedron meets this condition (Figure 5a).  To maximize symmetry, I regard the 
octahedron as a 3-sided anti-prism; this readily leads to a meandering path that exhibits D3d glide symmetry 
(Figure 5b).  To turn this Euler circuit into a knot, I must now avoid the intersections of the two passes that 
the knot strand makes through every vertex.   A lopsided extension of all the lobes makes this possible, but 
it breaks all mirror symmetries.  However, the same entanglement can be used at all six vertices, leading to 
an alternating knot that still exhibits D3 symmetry (Figures 5c and 5d). 

           
                  (a)                                    (b)                                     (c)                                        (d)   

Figure 5: (a) Octahedron;  (b) an Euler circuit on it;  (c) wire-frame knot; (d) 3D-print. 
 

The Other Four Platonic Polyhedral Edge Knots 
The other four Platonic solids have vertices with odd valences; therefore, an Eulerian circuit cannot be 
drawn on their edges.  I remedy this problem by judiciously doubling some edges, so that all vertices assume 
an even valence.  For a starting polyhedron with v vertices, I need to double a subset of v/2 edges in a 
configuration of maximal symmetry.  On the resulting graph I can then draw an Euler circuit.  
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Figure 6a shows the chosen path for the tetrahedron:  It starts at the arrow and follows green – orange – 
magenta – and blue, back to the starting point.  Where the knot strand passes twice through each of the 
doubled edge pairs (magenta/green and yellow/blue, I let the two strands twist around each other in a helical 
manner.  If the two double-strands twist in same way, then the result is a knot with D2 symmetry (Figure 
6b); this happens to be the non-alternating Knot 74.  If both helices twist in opposite directions, one obtains 
the alternating Knot 83; it exhibits S4 symmetry (Figure 6c). 

             
                          (a)                                            (b)                                                  (c)   

Figure 6: (a) Tetrahedron with two opposite edges doubled;  (b) a resulting polyhedral edge knot:  
Knot 74 with D2 symmetry; (c) a variant in which both helices twist in opposite directions: Knot 83. 

 
Next, I use the same approach for the cube.  Here, four edges must be doubled so that all vertices have a 
valence of 4.  When doubling a set of four parallel edges, resulting in a D4h-symmetric configuration, I 
could not find a good Euler circuit of high symmetry.  Instead, I double a set of edges as indicated in Figure 
7a, exhibiting D4d symmetry.  I reversed the twists on the top and bottom pair of the doubled edges, to 
obtain a fully alternating knot with S4-symmetry; it is the 12-crossing Knot 12a1288.  When all helices twist 
in the same direction, the resulting knot is Knot 12n888, exhibiting D2 symmetry (Figure 7c). 

           
                                  (a)                                            (b)                                            (c)   
Figure 7: (a) Cube with 4 doubled edges;  (b) alternating Knot 12a1288,  (c) non-alternating Knot 12n888.  

 
The dodecahedron has twenty valence-3 vertices; thus, ten edges (shown in purple) need to be traversed 
twice.  As shown in Figure 8a, a nice D10d-symmetrical solution can be found.  Figure 8b shows a knot 
strand that maintains S10 symmetry.  The corresponding 3D-print is shown in Figure 8c. 

The icosahedron presents more difficulties.  I first selected six mutually perpendicular edges (shown 
in grey) to be doubled (Figure 9a).  However, when trying to find a highly symmetrical Euler circuit and 
corresponding knot strands, I ended up with six or with three congruent linked loops (Figures 9b and 9c).   

Instead, when I chose a D3d-subset of double edges (shown 2-colored in Figure 9d), I could find an 
Euler circuit that maintained S6-symmetry.  I was able to maintain this symmetry in a properly linked wire-
frame knot. Figure 9e shows the complete knot strand composed of six congruent, differently colored, 
consecutive strand segments.  Figure 9f shows a corresponding 3D-print.  All these models were designed 
with Berkeley SLIDE [10].  
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                             (a)                                                 (b)                                                     (c) 

Figure 8: (a) Dodecahedron with 10 double-edges;  (b) knot strand with S10 symmetry;  (c) 3D-print. 
 

(a)      (b)      (c)  

(d)      (e)      (f)  
Figure 9: (a) Icosahedron with 6 orthogonal edges marked for doubling.  (b) Link of 6 congruent loops.  

(c) Link of 3 congruent loops.  (d) D3d-subset of double edges and corresponding S6 Euler circuit;  
 (e) corresponding S6 wire-frame knot.  (f) 3D-print.   

 

Prisms and Anti-Prisms 
Of coures, we need not limit ourselves to start with one of the Platonic solids.  We can start from any more 
or less symmetrical polyhedron – either an Archimedian solid or even a simple prism.   

The octahedron, when seen as a 3-sided anti-prism, can serve as a guide for finding symmetrical 
Euclidian circuits for all other anti-prisms. All anti-prisms possess only vertices of valence 4; thus, no edge-
doubling is required.  All s-sided anti-prisms can be covered nicely with a path with Dsd symmetry that 
meanders up and down around all consecutive triangular side-faces (Figure 10a).  This circuit can then be 
turned into a properly entangled knot with S2s symmetry (Figure 10b) – as was done for the octahedron. 

Straight prisms can be covered in a similar manner, if they have an odd number of sides. Figure 10c 
shows the general approach.  Similar to the path shown in Figure 10a,  the knot path travels up and down 
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on the prismatic side-edges and, in between, advances one step around the prism along the edges of the 
end-faces.  After two full tours around the prism, the path has traversed all end-face edges once, and all 
longitudinal prism edges exactly twice (Figure 10c).  Along the latter edges, the two passing strands are 
helically wound around each other.  Figure 10d shows the resulting sculpture for a 3-sided prism. 

                 
             (a)                             (b)                          (c)                               (d)                                 (e)             

Figure 10: (a) General anti-prism circuit.  (b) 4-sided antiprism knot.  (c) Circuit on a 3-sided prism; 
(d) corresponding prism sculpture.  (e) Euler circuit on a 10-sided prism. 

  
Prisms with an even number of sides are harder to deal with.  A cube can be seen as a 4-sided prism; thus 
the Eulerian circuit on the cube (Figure 7a) can serve as a guide how one might handle other even-sided 
prisms.  On the cube, the path makes a vertical transition after taking three steps along the edges of an end-
face.  After four such moves, i.e., three full tours around the prism, the path has traversed all vertical edges 
once, and half of the end-face edges twice.  Figure 10e shows how this approach can be generalized, using 
the example of a 10-sided prism.  But this approach only works for two thirds of all cases.  When the 
number of sides is divisible by six, the path closes on itself after just one tour around the prism, and this 
procedure would result in a link with three components.  I have not yet found a general technique for 
handling this remaining third of the even-sided prismatic cases. 
 

Archimedean Solids 
Here is an example based on semi-regular polyhedra.  The shapes in Figure 11 can either be seen as 
truncated octahedra with 12 edges doubled (Figure 11a) and with the two parts of the knot strand passing 
through those edges intertwined in a helical manner.  Alternatively they can be seen as knots on the edges 
of a cuboctahedron with complex helical linkings at all 12 vertices, stretching them into edge-like structures. 

If all these linkings are helices with 1.5 turns, the result is a link with four components, which roughly 
follow equatorial circles around the cuboctahedron (Figure 11b).  Giving all helices a full number of twists, 
yields eight roughly hexagonal linked loops (Figure 11c).  Both these link sculptures have the symmetry of 
the oriented octahedron.  To turn this into a single knot, three of the helices need to make full twists, while 
the other nine helices make an odd number of half-twists (Figure 11d).  This results in a single alternating 
knot, with D3 symmetry, shown as a 3D print in Figure 11e. 

             
               (a)                           (b)                             (c)                            (d)                              (e) 

Figure 11:  (a) Truncated octahedron with doubled edges. (b) 4-component link.  (c) 8-component link.  
(d) A single wire-frame knot with D3 symmetry;  (e) corresponding 3D-print.  
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4. Graphs Derived from Regular 4D Polytopes 
We don’t have to restrict ourselves to the edges of convex polyhedra.  Any nicely symmetrical graph with 
all even-valence nodes can serve as a good starting point for a knot sculpture.  A first candidate that came 
to my mind is the cell-first projection of the 4D simplex into Euclidian 3-space.  The edge graph of the 4D 
simplex can be depicted as a tetrahedral wireframe with an extra node in the center, which connects to the 
four tetrahedral vertices (Figure 12a).  All nodes are valence 4.  Now the challenges are to find an Eulerian 
circuit with maximal symmetry and then to find a way to loop the knot strand through the five nodes to 
maintain as much symmetry as possible.  For the first task, we can take the tetrahedron with two doubled 
edges (Figure 6a) and pull one edge from the top and one from the bottom to cross and link in the center 
(Figure 12b).  To make this an interesting knotted sculpture, I let these two edges form a Granny-knot in 
the center (Figure 12c).  For the crossings of the strand in the outer four vertices, I simply let one strand 
make a loop around the other one.  While the overall shape follows the symmetrical frame of the projected 
4D simplex, I have not yet found a way to maintain any strict symmetry in the final knot (Figure 12d). 

             
                         (a)                                   (b)                                   (c)                                (d) 

Figure 12: (a) 4D simplex projected into R3;  (b) Euler circuit on this simplex.  
 (c) The central Granny knot.  (d) A resulting wire-frame knot sculpture. 

 
In the same spirit, I am trying to find a good solution for the Hypercube (Figure 13a).  Its edge graph has 
16 nodes of valence four; thus, no edge doubling is necessary.  However, it is less obvious how to construct 
a good traversal through all the 32 edges that is as symmetrical as possible.   If I try to maintain C4 symmetry 
by repeating one path component four times around the z-axis, I obtain two separate circuits (Figure 13b).  
To obtain a single circuit, the symmetry needs to be broken; one component might make an extra quarter 
turn around the z-axis, while another one makes one quarter turn less (Figure 13c).  Of course, the actual 
knot strand based on such an Euler circuit does not show any strict symmetry either (Figure 13d). 

            
                        (a)                                  (b)                                  (c)                                    (d) 

Figure 13: (a) 4D hypercube projected into R3.  (b) Not quite an Euler Circuit; 2 components. 
 (c) A proper Euler circuit with no symmetry;  (d) an equivalent hypercube wire-frame knot. 

 
5. Discussion and Conclusions 

Non-trivial prime knots can neither exhibit mirror symmetry nor the higher-order symmetries of the 
Platonic solids.  However, tubular sculptures representing a single knot with a structure that mimics a 
Platonic solid can still be constructed by letting the knot strand follow the edges of such a regular 
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polyhedron.   The first step is to turn the given polyhedral edge graph into a graph with all vertices of even 
valence.  Jablan et al. [6] describe several ways how this can be done.  I have used selective edge-doubling, 
because it nicely preserves the desired edge geometry.  The next, more difficult step is to find an Eulerian 
circuit on this graph. This circuit can then be converted into a mathematical knot by placing the appropriate 
Conway tangles [1] onto each valence-4 vertex.  When strands running through a doubled edge are wound 
around each other, the resulting type of knot will change.  This is of no concern to me, since my goal is not 
to generate any specific knot, but to design an overall pleasing geometrical object.  This then leads to the 
most work-intensive phase: the construction of the sweep paths for the various helices and for the 
interlinked loops at all the vertices.  Using judiciously chosen, parameterized control points for the various 
B-spline curve segments allows me to fine-tune the geometry while looking at the complete sculpture [10]. 

If maximizing symmetry is the main goal, then it is better to construct multi-component links, rather 
than single-thread knots.  Mathematical links are not restricted in the symmetries they can exhibit.  The 
simple Hopf link (Figure 14a), exhibits D2d symmetry with two mirror planes.   The same symmetry is also 
displayed by the four circular border curves in Perry’s sculptures “Tetra” and “D2d” (Figure 14b) [7].   

                     
                              (a)                               (b)                              (c)                                   (d)                

Figure 14: (a) “Bonds of Friendship” by Robinson [8].  (b) “D2d” by Perry [7]. 
 (c) “Tetra Tangle” by Séquin [9][9].  (d) 20-component link with cube symmetry. 

 
With the use of mathematical links, rather than knots, it is easy to build sculptures with arbitrary 
symmetries, including the spherical symmetries of the Platonic solids.  As an example, “Tetra-Tangle” is 
composed of four interlinked triangular frames (Figure 14c) [9]; it has the symmetry of the oriented 
octahedron.  One can also readily construct a structure that has the full 48-fold symmetry of a cube.  It may 
be composed of twelve tori representing the edges of a cube, and it may use another set of eight tori (shown 
in red) that hold together the edge-tori (Figure 14d). 
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