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Abstract  

We develop a systematic procedure to construct models of carbon nanotori with smoothly varying local curvature. 
The tubular radius is preserved by repeatedly connecting a tube with its mirror image and forming a torus, where a 

set of five indices suffice to uniquely characterize this scheme. We also extend the constructing strategy to stadium- 

and star-shaped rings and the corresponding intersecting structures. The bead models of the structures are presented 

as well. 

 

Introduction 

The graphitic system, the collection of sp2 carbon allotropes, has raised attention for its fascinating physical 

properties. Apart from its possible applications, we are highly interested in such systems because the triply 

connected graphs can be realized particularly well by bead models, where the beads are related to the edges 

of the mesh.  As part of the class, carbon nanotubes (CNTs)  are straight tubules obtained by rolling up a 

graphene, a honeycomb of carbon atoms. The geometry of a CNT can be uniquely defined by its chiral 

vector, the boundary condition of CNT, a two-component vector relating two honeycomb lattice points.  

As a derivative of CNTs, carbon nanotori are tubular loops with genus one surfaces. In 2009, Chuang 

et al. epitomized various types of carbon nanotori by elegantly performing manipulations on the tiling of a 

hexagonal hollowed prism [1]. Some of the nanotori, however, look like rounded polygonal rings rather 

than circular tori with smoothly varying curvatures. This is ascribed mainly to the high density of defects 

(pentagons and heptagons) in a single junction. In this work, we introduce a strategy to generate nanotori 

with smoothly varying curvature and constant tubular radius. It is worth mentioning that this type of torus 

is not beyond the scope of Chuang’s research; nevertheless, we view the constructing procedure from a 

distinct viewpoint which enables us to build various shapes of rings with constant tubular radius. 

 

Carbon Nanotori 

In the first place, we demonstrate the approach for generating carbon nanotori by mitering nanotubes 

consecutively. Given a chiral CNT with chiral indices (𝑛,𝑚), we could connect a pair of mirror-reversed 
(𝑛,𝑚)-(𝑚, 𝑛) CNTs by carefully inserting a pair of pentagon and heptagon into the tubular system [2]. 

First, we cut the pencil-shaped dislocation 𝑃𝐻𝑃′𝑃′𝐻 out of the graphene sheet in Fig.1a. The two 𝑃𝐻⃗⃗⃗⃗⃗⃗  

vectors on the tip of the pencil are specified by (𝑛 − 𝑚, 0) and (0, 𝑛 − 𝑚), and the 𝐻𝑃′⃗⃗ ⃗⃗ ⃗⃗  ⃗ vectors on the shaft 

part of the pencil are denoted by (𝑚,𝑚). Fusing both 𝑃𝐻𝑃′ sides together leads to a dislocation containing 

a pair of defects in Fig.1b. We then roll up the strip of graphene to the tube in Fig.1c, which represents the 

radius-preserving CNT junction with a mirror plane passing through the midpoint of two defects. 

Due to the positive and negative curvatures accompanying the corresponding pentagon and heptagon, 

the tube deforms with a specific bending angle, illustrated in Fig.1c. Besides, the vectors connecting the 

pentagon and the heptagon at the joint are uniquely determined by the chiral indices of the tube (in this case, 
(3,0) and (2,2)). It is noteworthy that this kind of junctions is the only way to preserve the tubular radius 
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and contains exactly one pair of defects at the same time. Other ways to create a junction either change the 

diameter or introduce extra pairs of defects [2]. 

 

 

Figure 1:  Three steps of connecting chiral CNT with its mirror image (5,2)-(2,5). (a) Cutting off a 

dislocation (grey area) and fuse two sides to generate a pair of defects in (b). The sheet is then rolled up 

to form a bending tube in (c). 

 

Roughly speaking, repeatedly joining such junctions creates a torus. To get a continuously bending 

tube, we place a second dislocation in the opposite way to switch back the chirality of the graphene sheet 

as shown in Fig.2a. Apparently, this choice is not unique. We could, in general, apply vertical shift (Fig.2b, 

left) and horizontal shift (Fig.2b, right) to the second one to alter its relative position. To specify the shifts, 

we focus on the black dot 𝐇 on the second dislocation in Fig.2, which is the position of heptagon and able 

to represent each unique dislocation. Furthermore, the grids are parametrized by the vertical and horizontal 

shifts (𝑣𝑠, ℎ𝑠) as shown in Fig.2c. We note that (𝑣𝑠, ℎ𝑠) does not follow the usual convention of chiral 

indices. However, this definition affords a bijective correspondence between all possible shifting states and 

nonnegative integer pairs (1 ≤ 𝑣𝑠 ≤ 𝑛 + 𝑚, 0 ≤ ℎ𝑠 ). After elaborating the placement of the second 

dislocation, the two dislocations can be viewed as a unit. A torus is obtained by duplicating the unit N times 

to miter the tubes repeatedly as depicted in Fig.3, where N is the rotational symmetry number of the torus. 

 

 

Figure 2:  Diagrams that represent consecutive junctions and the operations which change the relative 

displacement of adjacent dislocations. (a) The second dislocation is placed next to the first one with the 

tip pointing down. The black dot 𝐻 indicates the position of heptagon and the arrows imply practical 

shifting directions. (b) The left one shows the vertical shift (vs)  for 𝐻 as it descends along the edge of the 

first disclination. The right one demonstrates the horizontal shift (hs) for 𝐻 as it moves horizontally along 

the row of hexagons. (c) Possible positions of 𝐻 parametrized by (𝑣𝑠, ℎ𝑠). The linear independent 

operations span the strip of graphene. 
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Figure 3:  Constructing carbon nanotori by repeatedly connecting tubes, and the structure can be fully 

described with five indices (5,2,3,0,5). (a) Conjugated dislocations mapping on the graphene. (b) The 

corresponding carbon nanotori after the cut and paste procedure from (a). 

 

The geometrical information of the torus can be fully described by five indices, which determine the 

chiral vector of the tube (𝑛,𝑚), the relative position of two adjacent dislocations (𝑣𝑠, ℎ𝑠), and the number 

of segments (𝑁). By removing the shaded pencil-shaped area and gluing edges suitably, Fig.3a can then be 

transformed into Fig.3b, a carbon nanotorus with indices (5,2,3,0,5). 

Following the construction scheme of smoothly varying carbon nanotori above, we present the pictures 

of beaded tori in Fig.4, in which the beads take the position of edges of the structures shown above. The 

defects (five- and seven-membered rings) are represented by colored beads with the remaining beads on 

regular six-membered rings being white. It is evident that these discretized toroids have smoothly varying 

curvature and are close to ideal circle-shape tori, as compared to a large family of tori covered in Chuang’s 

classification scheme previously, with a representative torus shown in Fig.4d. 

 

          
(a)                                      (b)                                     (c)                                   (d) 

Figure 4:  (a), (b), and (c) are the bead models of carbon nanotori with the geometrical indices being 

(3,1,4,0,10), (3,2,4,0,9), and (3,2,2,0,10), respectively. (d) Chuang’s polygonal torus. 
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Different Shaped Carbon Nanoring and Related Structures 

Apart from regular toroidal systems, we extend the mitering procedure to form more flexible tubular 

structures. Inspired by the concept of space curve design of discretized segments developed by C. H. Séquin 

et al. in 2019 [3], we treat each junction as a bending module and rotate the dihedral angle between two 

corners by manipulating the vertical and horizontal shifts. Theoretically speaking, by this means it is almost 

possible to build up an arbitrary tubular space curve. However, finding the proper shifting of each unit for 

a specific curve is indeed grueling, which we can currently achieve by trial and error. Therefore, we only 

demonstrate two structures we have successfully completed and the related artistically pleasing bead crafts. 

 

             
(a)                                  (b)                                         (c)                                          (d)                          

Figure 5:  (a) Stadium-shaped carbon nanoring. (b) Star-shaped carbon nanoring. (c) Bead model of 

Borromean rings formed with three units in (a). (d) Bead model of orderly tangled six star-shaped rings. 

 

Here in Fig.5a is a stadium shaped carbon nanoring with C2h symmetry. A pair of semi-circles are 

connected via two short segments of nearly straight CNTs, each with five consecutive dislocations. Fig.5c 

is the corresponding bead model of CNT based Borromean rings made up of three stadium-shaped nanoring. 

Although none of the rings are linked with each other, the overall structure cannot be separated. Moreover, 

the length of the link between two semi-circles in one ring is adjusted to precisely accommodate the 

insertion of another perpendicular ring in order to avoid loose packing of the whole compound. In Fig.5b, 

a star-shaped carbon nanoring is presented. It is constructed by connecting two types of arcs alternatingly, 

ones with smaller radii facing inward while the others facing outward. We handle the connection between 

two parts attentively to prevent deviation from the plane of the star. The regular polylink consists of six 

star-shaped rings is shown in Fig.5d. The six components lying on the great circle of the corresponding 

icosidodecahedron are orderly tangled [4]. We also accurately regulate the lengths of the two arcs to achieve 

a nearly tight configuration. 
 

Acknowledgements 

We thank the Ministry of Science and Technology, Taiwan for financial support.  
 

References 

[1] C. Chuang, Y. C. Fan, and B. Y. Jin. “Generalized Classification Scheme of Toroidal and Helical 

Carbon Nanotubes.” J. Chem. Inf. Model, 2009, 49, 361–368. 

[2] S. Melchor and J. A. Dobado. “Contub: An Algorithm for Connecting Two Arbitrary Carbon 

Nanotubes.” J. Chem. Inf. Comput. Sci. 2004, 44, 1639–1646. 

[3] C. H. Séquin, W. Brandon, and J. Liu. “Modular Construction of Symmetrical Knots.” Proceedings of 

SMI, Vancouver, Canada, Jun. 19–21, 2019, pp. 61–68.  

http://people.eecs.berkeley.edu/~sequin/PAPERS/2019_FASE_ModKnots.pdf 

[4] A. Holden. Orderly Tangles. Columbia University Press, 1983. 

Ho, Chuang, and Jin

334

http://people.eecs.berkeley.edu/~sequin/PAPERS/2019_FASE_ModKnots.pdf

