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Abstract

Constructing a cube with twice the volume of a given cube is one of the three famous problems of Greek antiquity

which resists all attempts using ruler and compass only. The other two are trisecting an angle and squaring the circle.

The impossibility of all three constructions with compass and straightedge has been proved, but many novel geometric

methods have been devised to solve them by breaking the Greek rules. Here the first author presents a method which

he has devised for doubling the cube, and the second author presents a proof for its correctness.

Whenever “doubling the cube” is mentioned, mathematicians usually beat a hasty retreat. Of course it is

common knowledge that it cannot be done by ruler and compass alone, but there are many very subtle

geometric methods to achieve it.

The first author is a German graphic artist and painter in the direction of concrete art [2, 3]. One day he

showed me, the second author, a method he had devised for doubling the cube, shown in Figure 1a [1].

(a) (b)

Figure 1: Left: Niemeyer’s painting, “Doubling the Cube.” Right: A diagram to explain the proof that

point C divides the base of a 3 × 3 rectangle into segments with the proportion 1 :
3
√

2.

The construction involves sliding a 2 × 3 rectangle inside a 3 × 3 square where, at first, the only constraints

are that the rectangle must touch the top left vertex as well as a point on the top edge that is 2 units from the

top right vertex, as if there were a too-small “door” through which the rectangle were trying to pass. Sliding

the rectangle until the vertex diagonal from the top one touches the bottom edge of the square, the point of

contact divides the base into two pieces that have the proportion of the required cubes. He was convinced of
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his construction but had no proof. I naturally had my doubts, but did not want to leave it at that and thought

that it cannot be that difficult to prove or disprove. It turned out to be quite a lot of work, with features that,

to my mind, merited making it known to others.

Let the vertices of the square be given in R2 by (0, 0), (3, 0), (0,−3), and (3,−3). Then the right-hand

door post B has coordinates (1, 0). The top right vertex A of the rectangle is outside the door, the origin O
lies on one of its short edges, B lies on one of its long edges, and the vertex C diagonally opposite to A lies

on the bottom edge of the square, as shown in Figure 1b.

Let C be given by (x,−3) and denote (0,−3) by D. Then C divides the bottom edge of the square into

two pieces of length x and 3 − x. We claim that these pieces have the proportion required for cubes whose

volumes are in the proportion 1:2. In other words, we need to show that x 3
√

2 = 3 − x.

As in the diagram, name legs of △OAB as a and b, with angle ∠AOB called θ. Since the “door” has

width 1, a = cos(θ) and b = sin(θ). The proof proceeds by analyzing vertical and horizontal components of

the vector equation

OA+ AC = OC. (1)

For the vertical components, name ∠ACD as ψ and ∠OAC as φ, noting that ψ = π − θ − φ, so that sin(ψ) =
sin(θ + φ) and cos(ψ) = − cos(θ + φ). Equating the vertical components of (1) gives a sin(θ) −

√
13 sin(ψ)

= −3. By the angle addition formula, together with sin(φ) = 3/
√

13 and cos(φ) = 2/
√

13, we get

ab −
√

13

(

2b
√

13
+

3b
√

13

)

= −3, or ab − 2b − 3a = −3.

Replacing b with
√

1 − a2, squaring to eliminate the radical, and dividing by the known factor a − 1 gives us

a3 − 3a2
+ 9a − 5 = 0.

By Cardan’s solution for the cubic, the unique real solution to this equation is a = 1+ω−ω2, where ω =
3
√

2.

The appearance of ω suggests that we are on the right track. It follows that b =
√

1 − a2
= 2 − ω.

Equating the horizontal components of (1) gives a cos(θ) +
√

13 cos(ψ) = x. Our formulas for a and b
quickly give x = a2 − 2a + 3b = ω2 − ω + 1. To verify the desired equation, x 3

√
2 = 3 − x, we only need to

verify that

(ω2 − ω + 1)ω = 3 − (ω2 − ω + 1).
Therefore, the bottom edge of the square in Figure 1a is indeed divided into pieces with a ratio of 1 :

2
√

3,

solving the problem of antiquity as claimed.
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