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Abstract
This note records an approach to understand Derek Hacon’s sphere eversion. In particular, Hacon’s description
and drawing of a regular homotopy of the outer cylinder was translated into an analytical expression, which is
generated by deforming a circle along the temporal and a spatial dimension. The circle deformation is controlled by a
two-parameter motion of finitely many points. This model was used in computer visualization and rapid prototyping.

Introduction

Since Smale proved the existence of sphere eversion, many concrete descriptions of such processes have been
found (e.g., [5]), although all are difficult to understand. In the 1970s, Derek Hacon discovered a particularly
elegant eversion [2], which was not widely known until much later. In 2016, Polster explained Hacon’s
eversion in a Mathologer video [4], which had more than 250,000 views at the time of this writing.

Figure 1: A triangle was cut off to show the inside; Derek Hacon’s formula sphere=12torus+2domes

In Hacon’s eversion, the sphere is decomposed into three parts: the southern hemisphere, the northern
hemisphere and an equatorial belt connecting the two. First, the southern hemisphere is pushed toward the
northern hemisphere so that they become the inner dome and the outer dome while the equatorial region is
morphed into half a torus (Figure 1). Then, as its two boundary circles stay on the plane � = 0, the half torus
undergoes a deformation which eventually flips its two sides. At the same time, the inner and outer domes
trade their locations. Lastly, the new inner dome (which was the northern hemisphere) is pushed downward.
The original sphere now is turned inside out!

Figure 2: Hacon’s half-torus eversion. The � values are for later reference.

The half-torus eversion is shown in Figure 2. These seven frames are renderings of the pictures on the first
page of Hacon’s note [2]. The beautiful video [1] by Chéritat animates a similar eversion, whose spatial
mirror image is homotopic to that of Hacon. The inner dome and outer dome deformations follow those of
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their base circles. As the base circle (in blue-gray) of the inner dome is always a simple closed curve, the
inner dome can stay embedded (without self-intersections), and we can animate its motion in our mind. The
base circle (in black) of the outer dome, however, crosses itself multiple times under the deformation. Thus,
the motion of the outer dome, which is an immersed rather than an embedded surface most of the time, is
more complicated. This note aims to explain some details of the deformation of the outer dome.

Regular Homotopy of the Outer Cylinder

For each � ∈ [−1, 2] and � ∈ [0, 1], I will construct an immersed planar circle C�� , which collectively give
us an analytical two-parameter circle deformation, along the temporal dimension � and the spatial (elevation)
dimension �. The seven base circles (in black) in Figure 2 are C0� , for � = −1,−0.5, 0, 0.5, 1, 1.5, and 2. I will
describe a way to interpolate among them to generate C0� for all �, and then deform them to generate C�� for
all � and �, such that for each �, C1� is an embedded circle. The immersed outer dome at each time instance �
is the union of an immersed cylinder and an embedded roof, which meet along the simple closed curve C1�
on the plane � = 1. The roof follows C1� , which doesn’t have self-intersection, so we can simply picture the
roof’s movement in our head. For each �, stacking the intermediate curves in a deformation from C0� to C1� as
� goes from 0 to 1 generates each immersed cylinder Cyl� , which will be our focus.

(a) � = 0, � = 1

(b) � = 0, � = 0.5

(c) � = 0, � = 0

(d) � = 0.5, � = 1

(e) � = 0.5, � = 0.5

(f) � = 0.5, � = 0

(g) � = 1, � = 1

(h) � = 1, � = 0.5

(i) � = 1, � = 0

Figure 3: Deformation of the immersed circle (in black) is controlled by the motion of 20 points (in red).

In [2], Hacon described the deformation of C�� by indicating the movement of 4 points on each circle, which
suggests that (cubic) B-splines could be used to generate analytical expressions (piecewise polynomials) for
C�� , whose deformation are controlled by the motion of more, in our case 20, control points.

Let’s start by focusing on frames 3 to 5 in Figure 2, during which the inner loop travels counterclockwise
from west to east as � goes from 0 to 1. At the earlier stage of this research, I tried to model the loop
motion by moving the 20 control points directly. However, I found it very challenging to produce a visually
satisfying result. In any way, the control points need to make their moves in a coordinated manner. It
would not be a good idea to move the control points individually in order to produce loop motion. Later, I
adopted a technique which was inspired by Thurston’s corrugation method [3] (Figure 3c,f,i). First, a base
figure-8 curve (in gray) was generated using B-splines. Then a short arc (in blue) on it is identified and it
moves counterclockwise from west to east as � goes from 0 to 1. Afterwards, a B-spline-generated simple
closed curve, whose base point is the origin, is added to the blue short arc, after being point-wise rotated by
the unit-tangent-unit-normal orthogonal frames of the blue short arc. In the corrugation method, multiple
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figure-8 curves are added to a base curve. Here, a single simple closed curve is added to the base figure-8.
Now, the compsed curve contains an inner loop. As we move the blue short arc, the inner loop also

moves. We can also control the shape of the inner loop by moving the control points of the added simple
closed curve, in this case, simply along individual straight lines (Figure 3b,e,h). As � changes from 0 to 0.5,
the inner loop moves towards north and is enlarged. See the transition from Figure 3c,f,i to Figure 3b,e,h.
Now, we can evenly choose 20 points in the domain of each composed parametrized curve, with points closest
to the center of the northern loop modified to maintain�1 regularity. These 20 points in turn generate another
curve, which is our C�� .

To see what happens for 0.5 ≤ � ≤ 1, a �-shaped simple closed curve was first constructed using
B-splines, whose left and right lobes trade their sizes as � goes from 0 to 1. Again, 20 points were chosen
on each curve, this time unevenly to avoid singularity, but with modification for �1 regularity as well (Figure
3a,d,g). The 20 points for each C0.5� are moved to these 20 points along individual straight lines, so that they
generate C�� for all � between 0.5 and 1 and all � between 0 and 1. As � changes from 0.5 to 1, the two lobes
of each immerse circle are separated, so that for each �, C1� is simple-closed. Overall, for 0 ≤ � ≤ 1 and
0 ≤ � ≤ 1, the deformation of these 20 points gives us the deformation of C�� .

The above deformation corresponds to page 2–5 of Hacon’s note [2].
To complete the process, a “space-time rotation” is needed, as shown in Figure 4, where the immersed

circles along each diagonal line are the same, and so are the immersed circles in the two shaded triangles (in
light gray). Thus, Cyl� for −1 ≤ � ≤ 0 and 1 ≤ � ≤ 2 are generated from Cyl0 and Cyl1, respectively. This
corresponds to the last two pages (6–7) of [2]. Also note that Figure 4 is symmetric about � = 0.5.

Figure 4: Immersed circle “field”: Cross sections C�� of immersed cylinders on the parameter domain.

Figure 5: Cross sections C�� at � = 0.5, � ≈ 0.252 (left) and � = 0.5, � ≈ 0.287 (right).

Fix any � between 0 and 1, as � increases from 0 to 1, C�� has to pass through at least one triple point (where
three different points on the immersed circle meet), and three points of double tangencies (where two different
segments of the immersed circle are tangent to each other) (Figure 5). Indeed, all cross sections in columns
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� = 0, 0.25, 0.5, 0.75 and 1 of Figure 4 passed through exactly one triple point. They passed through five
points of double tangencies in the column � = 0.5, and three in the columns � = 0, 0.25, 0.75 and 1.

Figure 6: Immersed upper (0.5 ≤ � ≤ 1) and lower (0 ≤ � ≤ 0.5) cylinders corresponding to Figure 2.

Figure 6 shows computer generated pictures of the upper (0.5 ≤ � ≤ 1) and lower (0 ≤ � ≤ 0.5) cylinders
at � = −1,−0.5, 0, 0.5, 1, 1.5 and 2. Care has been taken to ensure that each pair of half cylinders match
smoothly. See also the 3D prints in Figure 7, which are hard to understand without some knowledge of their
cross sections. In case the reader would like to play with some animations, or is interested in more technical
details, a Mathematica notebook can be found on this paper’s Bridges Archive webpage.

Figure 7: 3D prints of immersed outer cylinders corresponding to Figure 2.
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