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Abstract  

This work examines artwork generated from the problem of repeatedly averaging together the vertices of a polygon, 

constructing new polygons with each iteration. Rather than investigate the final state, I’m interested in the aesthetics 

of intermediate states. I discuss several extensions of the fundamental process, including variations on the vertices 

averaged, the type of average used, and the initial polygon. Considerations for creating final images and example 

images using these concepts are presented. 

 

Background 

In this work, I explore artistic images of polygons that don’t appear to be polygons. There are many ways 

to define the term “polygon,” but they agree on a polygon being a closed figure on a plane whose sides are 

line segments. A polygon can be described as an ordered list of the (x,y)-coordinate pairs defining its 

vertices (corners). Using this method, the order of the points matters; Figure 1 shows three heptagons (seven 

sides) with the same vertices, used in different orders. In Figure 1(a), point A is the first vertex, point B the 

second, etc., skipping to the next vertex in line and resulting in a convex polygon. In Figure 1(b), A is first, 

then C, E, etc., skipping to the second next vertex in line, resulting in a non-convex polygon. In Figure 1(c), 

A is first, then D, G, etc., skipping to the third subsequent vertex and also leading to a non-convex polygon. 

In this work, polygons are defined by ordered lists of the vertices. 

 

 
                                (a) (b)             (c) 

Figure 1:  Three examples of polygons, showing the importance of vertex ordering:   

(a) using the vertices as listed, for a convex polygon, (b) skipping to the second next vertex  

for a concave polygon, (c) skipping to the third next vertex for a different convex polygon. 

 

The basic process behind this work is this. Let P0 be a polygon defined by an ordered list of its vertices. 

Then, iteratively form new polygons Pk, where the vertices of Pk are the midpoints of the sides of polygon 

Pk-1. For example, let P0 be the square with the vertices {(1,1), (-1,1), (-1,-1), (1,-1)}. The midpoints of the 

four sides are the averages of the vertices on either end of the side, so P1 has the vertices {(0,1), (-1,0),  

(0,-1), (1,0)}, and is also a square. As shown in Figure 2, subsequent iterations of this process lead to more 

squares, each smaller than the last, and all centered at (0,0). 

 

However, if the initial polygon is random, then the subsequent polygons have different shapes and 

become smoother as well as smaller. Elmachtoub and van Loan [3] proved that, in the limit of infinitely 

many iterations, the polygon’s vertices lie on an ellipse centered at the centroid of the original polygon. 

This is illustrated in Figure 3 with a random initial polygon. Figure 3(a) shows a random decagon (10 sides). 
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Figure 3(b) shows the original polygon (black) and the first iteration (gray), and Figure 3(c) shows (lightest 

line) and the progression of iterations, from one to three, 10, 30, and 100 iterations (Even though each 

polygon has 10 sides, the overlapping may make some polygons appear to have fewer sides). As the number 

of iterations increase, the new polygons (represented by darker lines) are smaller. At 30 iterations, the 

polygon resembles an ellipse and the 100-iteration case is indistinguishable from a single point in the middle 

of the original polygon. The convergence to an ellipse is not as apparent when beginning with a regular 

polygon (as in Figures 2(a) and 2(b)), as the vertices of a regular polygon lie on a circle, so they have 

already converged to an ellipse. 

 

 

 
 

 

 

(a) (b) 

Figure 2:  Iterated averaging the vertices of a square:  (a) initial square and  

first iteration, (b) initial square and first eight iterations. 

 

 

   
(a) (b) (c) 

Figure 3:  Iterated averaging the vertices of a random polygon:  (a) original polygon, (b) original 

polygon (black) and first iteration (gray), (c) original polygon (lightest), one, three, 10, 30, and 100 

iterations (darker lines correspond to more iterations). 

 

It’s seen in Figures 2 and 3 that iteratively averaging the polygon vertices leads to smaller and smaller 

polygons, converging to a point. The mathematics behind this process have been studied extensively and is 

a specific example of Mean Curvature Flow [2]. Consequently, in this work, the sizes of the polygons are 

not of interest, only their shapes. In particular, I consider the shapes of intermediate steps between the 

original polygon and the limit point. Figure 4 shows an example beginning with a 100-vertex random 

polygon, showing the shapes of the initial polygon (Figure 4(a)), and the results after 10, 100, 1,000, and 

10,000 iterations (Figures 4(b) through 4(e), respectively). In my opinion, the middle three panels of Figure 

4 are more aesthetically interesting and are the subject of art arising from this method. The sections that 

follow discuss extensions to the basic process, which may be used for artistic effect. 

 

(1,1) (-1,1) 

(-1,-1) (1,-1) 
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Varying the Vertices Averaged 

As described above, the basic iterative process is to form new polygons whose vertices are the 

midpoints of the sides of the previous polygon. This is mathematically equivalent to the following: for 

every vertex in the old polygon, average its x- and y- coordinates with those of the next vertex and using 

those averages as vertex coordinates in the new polygon. There’s no reason why more points can’t be 

averaged together, say six or 10 or 20. Figure 5 shows one example, beginning with a random 900-sided 

polygon. (The initial polygon is essentially a jumble of random segments like Figure 4(a), but worse, and 

is not shown.) In Figure 5(a), two subsequent vertices are averaged at a time and the process ran for 1,800 

iterations. In Figure 5(b), 5(c), and 5(d), six, 10, and 20 subsequent vertices were averaged at a time, 

respectively, each for 1,800 iterations. Notice how the shapes in Figures 5(b), 5(c), and 5(d) are smoother, 

with Figure 5(d) being very close to an ellipse. This suggests that averaging more vertices accelerates the 

convergence process, increasing the effective number of iterations. The effect can be compensated for by 

reducing the actual number of iterations. Figures 5(e) – 5(h) use the same initial random 900-sided polygon 

and averaged four, six, 10, and 20 vertices, respectively. However, the numbers of iterations were decreased 

from 450 in 5(e) to 200 in 5(f), 72 in 5(g), and 18 in 5(h), and the final shapes are almost equal. It appears 

that the number of iterations needed to produce approximately the same shape scales inversely with the 

square of the number of vertices averaged together. This conjecture was not explored further in this work. 

 

     
(a) (b) (c) (d) (e) 

Figure 4:  The shapes resulting from iterated averaging the vertices of a random 100-gon:   

(a) original polygon, (b) 10 iterations, (c) 100 iterations, (d) 1,000 iterations, (e) 10,000 iterations. 

 

 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 5:  Varying the number of vertices averaged together and the number of iterations:   

(a) two vertices, 1,800 iterations, (b) six vertices, 1,800 iterations, (c) 10 vertices, 1,800 

iterations, (d) 20 vertices, 1,800 iterations, (e) four vertices, 450 iterations, (f) six vertices, 200 

iterations, (g) 10 vertices, 72 iterations, (h) 20 vertices, 18 iterations. 
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Another approach, which can be used independently of the number of vertices averaged together, is to 

change which vertices are used. For example, assume that the initial polygon has eight vertices, numbered 

1 through 8. Then, the basic process would average vertices 1 and 2 together to produce vertex 1 of the new 

polygon, and so on, as shown in Table 1 below. 

 

Table 1:  Adjusting the Numbers of Vertices Skipped and Averaged Together 

Basic: Skip 1, Average 2  Skip 2, Average 2  Skip 3, Average 3 

New Vertex Old Vertices  New Vertex Old Vertices  New Vertex Old Vertices 

1 1 & 2  1 1 & 3  1 1, 4, & 7 

2 2 & 3  2 2 & 4  2 2, 5, & 8 

3 3 & 4  3 3 & 5  3 3, 6, & 1 

4 4 & 5  4 4 & 6  4 4, 7, & 2 

5 5 & 6  5 5 & 7  5 5, 8, & 3 

6 6 & 7  6 6 & 8  6 6, 1, & 4 

7 7 & 8  7 7 & 1  7 7, 2, & 5 

8 8 & 1  8 8 & 2  8 8, 3, & 6 
 

Figure 6 shows four cases, each using the same initial random 1001-sided polygon and averaging 

together 40 vertices at a time, for 30 iterations. In Figure 6(a), 25 vertices are skipped (i.e., vertices 1, 26, 

51, 76, etc. are averaged together). In Figures 6(b), 6(c), and 6(d), 30, 35, and 40 vertices are skipped, 

respectively. Note how the shapes in Figures 6(a) and 6(d) are relatively smooth and simple, while Figure 

6(b) is decidedly more complex and Figure 6(c) is not smooth. This is apparently due to the numbers of 

vertices skipped in Figures 6(a) and 6(d), 25 and 40, respectively, being factors of 1,000, one less than the 

number of vertices. It seems that if the number of points skipped (other than one) is a factor of the number 

of vertices – 1 (or the number of vertices + 1), then the resulting shapes will be qualitatively different, being 

relatively simple and smooth. 

 

 
(a) (b) (c) (d) 

Figure 6:  Varying the number of vertices skipped in the  

averaging process:  (a) 25, (b) 30, (c) 35, (d) 40. 
 

Varying the Averaging Method 

Thus far, all the cases shown have used the arithmetic mean as the averaging method. The arithmetic mean, 

A, is the sum of the coordinate values divided by the number of vertices used in the average. However, there 

are many other types of averages that can be used. The harmonic mean, H, is the reciprocal of the arithmetic 

mean of the reciprocal of the coordinates. That is, take each coordinate to be averaged together, and sum 

the reciprocals instead of the coordinates themselves. Divide this sum by number of coordinates and take 

the reciprocal of that result. Another is the exponential mean, E. In this case, add up the exponentials of the 

coordinates, divide by the number, and then take the logarithm (the inverse function of the exponential) of 
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the result. See [7] for other types of means. Care must be taken when using any mean other than the 

arithmetic mean. Coordinate values that are 0 or negative may cause computation errors, depending on the 

averaging method used (although that could be an interesting area of research). Also, using powers that are 

not positive integers, or using logarithms, may cause discontinuities in the image. 

 

Figure 7 shows three examples. Each began with the same 1201-point random polygon, iterated 20 

times, skipping 30 vertices each iteration and averaging 40 vertices at a time. In Figure 7(a), the arithmetic 

mean is used, the harmonic mean in 7(b) and a weighted arithmetic mean in 7(c). The spiky nature of Figure 

7(b) is due to some coordinates being close to 0 and the reciprocals then becoming relatively large in 

magnitude. In Figure 7(c), the weight is the distance from the vertex being used in the average to the vertex 

whose new value is being found. For example, if the new value of vertex 1 came from averaging the old 

value for vertices 1, 4, and 7, then the weight for vertex 4 would be the distance cubed from the old location 

of vertex 1 to the old location of vertex 4. 

 

   
(a) (b) (c) 

Figure 7:  Three examples showing the use of different means:  

(a) arithmetic mean, (b) harmonic mean, (c) weighted arithmetic mean. 

 

Varying the Initial Polygon 

While beginning with a random polygon is relatively easy, other sets of points can be used instead. 

Depending on the set used, its structure may be persistent in subsequent polygons or may be quickly 

diffused. For example, if the starting set is the vertices of a regular polygon (or equivalently, equally-spaced 

points on a circle), all subsequent shapes (using the basic process) will be regular polygons. 

 

Figure 8 shows two examples using points randomly placed on well-defined curves as initial polygons. 

In Figures 8(a) and 8(d), 1201 points on a circle and three-lobed rose curve (respectively) serve as the initial 

vertices. Figures 8(b) and 8(e) show the initial polygons, and Figures 8(c) and 8(f) show the results after 20 

iterations. In both cases, 30 vertices were skipped and 40 vertices were averaged using the arithmetic mean 

on each iteration. 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 8:  Two examples using vertices randomly placed on curves:  (a) initial vertices on a circle, (b) 

initial polygon, (c) 20 iterations, (d) initial vertices on a rose curve, (e) initial polygon, (f) 20 iterations. 

 

Figure 9 illustrates the progression using two fractal curves, the Hilbert curve [4] and the Sierpinski triangle, 

created using the Chaos Game [1]. Figure 9(a) shows the initial polygon using the fourth level of the Hilbert 
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curve (256 vertices). Note that the last vertex (lower right corner) is connected to the first vertex (lower left 

corner) to close the polygon. Figures 9(b) and 9(c) show the fourth and 16th iterations, respectively, 

skipping 17 vertices and using the arithmetic mean to average together 14 vertices each iteration. Figure 

9(d) shows 1201 initial vertices, randomly created using the Chaos Game method, and 9(e) shows the 

resulting initial polygon. Figure 9(f) shows the 10th iteration, skipping 30 vertices and averaging together 

40 each iteration, using the arithmetic mean. 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 9:  Two examples using vertices derived from fractal curves:  (a) initial polygon from  

vertices on the Hilbert curve, (b) fourth iteration, (c) 16th iteration, (d) initial vertices on the  

Sierpinksi triangle, (e) initial polygon, (f) 10th iteration. 

 

Rendering Notes and Example Images 

Generating Random Numbers 

The images in the paper were created using Ultra Fractal [8] and a custom coloring formula, however, the 

concepts can be applied in other software packages. Like many other programs, Ultra Fractal has a pseudo-

random number generator, which was used to create the random vertices. Such generators usually use the 

linear congruential method [5], which requires an integer number as its seed. Because the integers are 

discrete, changing the seed slightly can lead to very different images. Figure 10 shows an example and one 

way to exploit that characteristic. The images in all four panels began with a 300-vertex random polygon 

and employed the basic method for 2,000 iterations. In Figure 10(a), the random number generator seed 

was 1 and in 10(b), it was 2. If you wanted an image between these two, it would be difficult to find the 

appropriate seed. Alternatively, the vertices of the initial random polygons can be considered two sets of 

points which could then be interpolated. Figure 10(c) shows 11 overlaid images on the same coordinate 

axes. The seed = 1 and seed = 2 shapes are drawn in bold lines. The other nine curves represent 

interpolations between those two, using a Bézier linear spline curve [6]. The interpolation parameter varies 

in from 0.0 for the seed = 1 case to 1.0 for the seed = 2 case, in steps of 0.1. The flow from one extreme to 

another can be imagined, but is difficult to see clearly. Figure 10(d) clarifies things by using 101 curves 

and varying the parameter from 0.00 to 1.00 by 0.01. Also, each curve is drawn in a light shade of gray and 

all are combined using a “multiply” merge mode (a gray pixel multiplied by another gray pixel becomes a 

darker gray pixel), so areas where multiple curves cross are darker than regions with a single curve. The 

Bézier curve formula works with complex numbers as well as real numbers, so the interpolation parameter 

can take on any complex value, greatly expanding the utility of the technique. 

Combining Multiple Polygon Curves into a Single Image 

Figure 10 illustrates one method of combining multiple polygon curves into a single image, by simply 

overlaying them. Then, the manner of combining them (e.g., multiplying or averaging) is limited only by 

the software of choice. Also, the lines can be rendered in different ways, allowing for additional flexibility 

in combining them. For example, since the vertices are ordered, each segment between subsequent vertices 

could be rendered in a different color. Figure 11 shows an example. In Figure 11(a), a single polygon curve 

is drawn with the color varying with the side (segment between vertices), from dark gray to light gray and 

to dark again. Figure 11(b) combines five such curves. Each curve has a different combination of the 

number of iterations and the number of vertices averaged together. The curves are rendered as thicker lines 

and combined using a “difference” merge mode to highlight the changes from one to another. Figure 11(c) 
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shows a more subtle use of this technique. Like in the previous panel, each of the 21 curves has a slightly 

different combination of parameters, changing slowly from one curve to the next, so that the variations are 

not as apparent. 

 

    
(a) (b) (c) (d) 

Figure 10:  Interpolating polygons using Bézier curves:  (a) seed = 1, (b) seed = 2, (c) seed = 1 and seed 

= 2 (both bold) with nine interpolated curves, (d) seed = 1 and seed = 2 with 99 interpolated curves. 

 

   
(a) (b) (c) 

Figure 11: Rendering the polygon by the side number:  (a) single polygon;  

(b) five slightly different polygons, (c) 21 different polygons. 

 

Since polygon sides are line segments, two additional aspects that can be used for coloring are the 

length and angle. Figure 12 shows an example for a 401-sided random polygon iterated 10 times using the 

arithmetic mean, skipping 20 vertices and averaging 20 vertices together at a time. In Figure 12(a), the sides 

are colored according to their length, and in 12(b), by their angle. Figure 12(c) combines them by taking 

the difference between their grayscale values. 

 

   
(a) (b) (c) 

Figure 12: Rendering the polygon sides by length and angle:  (a) by side length;  

(b) by side angle, (c) combining length and angle. 

 

In Figure 13, I show four example artworks that illustrate the concepts explored in this paper. Due to the 

constraints of printing the proceedings, the original color images have been converted to grayscale and 

tweaked slightly for aesthetic appeal. You may see the color works at my website, kerrymitchell.art. Figures 
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13(a) and 13(b) show two companion pieces, “Transformations 1” and “Transformations 2.” They both 

employ 2500-side random initial polygons (with different seeds) and the arithmetic mean. Each is composed 

of 21 different polygons, each with a different combination of iterations and vertices averaged together (as 

in Figure 11(c)). The smooth nature of the polygonal curves is due to only one vertex being skipped. In 

contrast, the images in Figures 13(c) and 13(d) skipped many vertices each iteration (30 and 32, 

respectively, giving them their stellated shapes. “Dejected” in Figure 13(c) began with a 1201-sided random 

polygon and was iterated 12 times, averaging 20 vertices at a time. This image used a weighted arithmetic 

mean, where the weight was the hyperbolic tangent of the distance from the vertex being averaged to the 

previous value of the vertex being updated. “On Pointe” in Figure 13(d) used a random 1025-sided initial 

polygon, which was created using a quadratic spline between seed values. It also used a weighted arithmetic 

mean, but the weight here was the magnitude of the ratio of the coordinates of the vertex being updated to 

the coordinates of the vertex used in the average (both sets of coordinates were treated as complex numbers 

in forming the ratio). Eight iterations were used, averaging 32 vertices each iteration and the shape was 

rendered according the side number, as discussed above. 

 

    
(a) (b) (c) (d) 

Figure 13:  Four example artworks from the website kerrymitchell.art, using the concepts in this paper:  

(a) “Transformations 1”, (b) “Transformations 2”, (c) “Dejected”, (d) “On Pointe.” 

 

Summary and Conclusions 

This work examined intermediate steps in the process of repeatedly averaging vertices of a polygon, before 

the new vertices converged to lying on an an ellipse. These intermediate forms are quite pleasing to the eye 

and belie neither the initial polygon nor the final limiting state. Many suggestions for expanding the process 

were presented, including varying the points used, the manner of averaging, and the initial polygon. 

Examples of artworks using these ideas were presented, and it seems an area ripe for additional exploration. 
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