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Abstract
Tablet weaving, also known as card weaving, is a method of making strips of fabric that has been used from ancient
times in many parts of the world. Unlike in most other sorts of weaving, in tablet weaving the warp threads are twisted
around each other as the cloth is produced. Since different design elements produce different directions of twist, it is
desirable for this twist to be balanced along the length of the weaving. This feature inspired the use in previous work
of a mean-reverting Markov process known as the Ehrenfest model to randomly generate tablet weaving patterns. In
this paper we apply the process to the technique known as “Egyptian Diagonals”. The result successfully reflects the
traditional design aesthetics of this technique, although the process was more difficult than in previous work.

Introduction

The craft of weaving has been studied mathematically for many decades, but (to my knowledge) the particular
technique known as tablet weaving or card weaving was first studied mathematically by the author [3]. We
quickly review the introduction of that work. Like other types of weaving, tablet weaving uses vertical (warp)
and horizontal (weft threads). The warp threads are passed through holes in tablets or cards, as shown in
Figure 1a, and are held under tension by a very simple system such as the loom shown in Figure 2a. The
cards separate the warp threads into two batches with a space, called the shed, between them. The weft thread
is passed through the shed (Figure 1b), after which the cards are turned. The cards may all be turned in the
same direction, or some cards may turn in the opposite direction from others. Weavers often offset some
cards in order to keep track of which direction they are turning, as in Figure 4b. The weft thread is then
passed back through the shed in the other direction, the turning directions of the cards are adjusted if desired,
and the cards are turned again. More details on the history and techniques of tablet weaving may be found in
the author’s previous work or in standard references [1, 2].

One commonly encountered type of tablet weaving pattern is called “Egyptian Diagonals” [6], or more
generically, “Broad Diagonals” [2, p. 98]. These patterns resemble pictures of fabrics found in Egyptian
tombs, although there is no conclusive evidence that this or any other tablet technique was used in ancient
Egypt [1, p. 109; 2, p. 11; 6, p. 3]. The pattern was first associated with ancient Egypt in the early twentieth
century, based on the similarities of the designs to those found in statuary and paintings and on the observation
of the so-called “girdle of Ramses III”. Further investigation of the structure of the girdle revealed that the
girdle could not have been woven using tablets, however [1, p. 304]. (The girdle also seems never to have
been owned by Ramses III [1, p. 301].)

In Egyptian Diagonals, two colors of warp threads are used, which I will call arbitrarily call color A and
color B. A pack of square cards is threaded with two adjacent threads of color A and two adjacent threads
of color B in each card. The cards are set up such that the first card has color A in the top two holes, the
second card has color A rotated 90 degrees, and so on. This produces warp colors staggered as shown in
Figure 2b.Depending on which direction the cards are turned, the colors make diagonal stripes in either the
Z (lower left to upper right, like a “forward slash”) or the S (lower right to upper left, like a “backslash”)
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direction across a 2 by 2 block of threads, as shown in Figure 2c. The characteristic design element of this
technique is an angled boundary between areas with stripes in the Z direction and areas with stripes in the
S direction [1, p. 109]. The boundaries between these areas are shown with red lines in Figure 2c; readers
are invited to imagine similar lines in Figures 3a and 3b. Note that this is not a reversible technique, as one
can see in Figure 3c. The back of the fabric shows a similar pattern in reversed colors from the front but the
diagonal lines are not as smooth, as can be predicted from a close examination of Figure 2b.

(a) (b)

Figure 1: (a) A pack of tablet weaving cards. (Note that there are additional threads through holes A and D
to secure the cards for photography.) (b) The weft thread being passed between the warp threads.

(a) (b) (c)

Figure 2: (a) A tablet weaving loom. (b) Schematic of the warp and weft threads. (Courtesy of
Lana Holden.) (c) Stripes in the S and Z directions.

The Basic Model

One difference between tablet weaving and other types of weaving is that the threads from each card are
twisted around each other as the piece is woven, as shown in Figure 2b. If the equipment is not specifically
designed to account for this, the twist can build up (Figure 4a) until it gets in the way of turning the cards, as
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in Figure 4b. To avoid this, it is important to design patterns so that the twist is more or less balanced. This
inspired the idea of using a mean-reverting random process to generate random tablet weaving designs. In
previous work [3] it was shown that “Coptic Diamond” tablet weaving patterns can be modeled with Markov
chains, which are random processes where the probability of each event (in this case, the choice between a
clockwise or a counter-clockwise twist) depends only on a discrete parameter describing the system (in this
case, the total amount of twist).

(a) (b) (c) (d)

Figure 3: (a) Simple Egyptian Diagonals pattern. (b) Egyptian-style pattern with diamonds.
(c) Reverse side of (b). (d) Woven version of Figure 5b, 0.75 × 4.375 in. detail.

(a) (b) (c)

Figure 4: (a) Twist building up in the warp threads. (b) Built-up twist has the potential to interfere with
turning the cards. (c) Woven version of Figure 6c, 0.75 × 2.75 in. pictured design size.

Similarly to the Coptic Diamonds, we will start by modeling an individual card using a simple mean-
reverting Markov chain known as the Ehrenfest model. This model can be used to model the motion of a
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particle traveling randomly but influenced by an elastic force [5]. If the particle is at the origin, it has an
equal chance of traveling one step to the left or one step to the right. If it is not at the origin, however, it will
move back towards the origin with probability

1
2

(
1 + 𝑘

𝑅

)
, (1)

where 𝑘 is the distance from the origin and 𝑅 is the maximum allowable distance. Otherwise, it will move
away from the origin. Since the particle is more likely to move towards the origin than away, the process
tends to revert towards the mean. For our application, the position of the particle represents the total amount
of twist built up by the card. When the particle is at the origin, there is no twist in the threads.

For Egyptian Diagonals, the direction of twist is determined by whether the diagonal is in the Z or S
direction. Therefore, it is important to keep the number of Z diagonals and S diagonals roughly equal for each
thread. Unlike for Coptic Diamonds, we also need to produce the characteristic angled boundaries between
the different regions. In order to achieve this, the pattern area was divided into columns whose borders did
not strictly follow the warp threads. Instead, each column was divided into a series of half-diamond shapes,
as shown in Figure 5a. As the pattern proceeds vertically, the turning direction of the diagonal is updated
independently at each new half-diamond according to the model. This allows for both horizontal and angled
boundaries, both of which can be seen in designs such as Figures 3a and 3b.

Results

The author has written a computer program (available at [4]) in the Processing language to generate random
patterns according to the procedure defined above. The program takes advantage of the object-oriented
nature of Processing by making each column of half-diamonds an object, which has methods for construction,
updating the twist, calculating the position of the next block, and drawing the next block. Since the Markov
chain only “remembers” the total amount of twist from one step to the next, the only variables associated
with each object are the total twist, the step number (not strictly necessary but convenient for several of the
routines), the position of the block, and the colors. This simplifies the program and reduces the amount of
memory used. It also has the interesting effect that once a pattern is drawn, the only record of the pattern is
on the computer screen itself; there is no data structure representing the pattern as a whole.

It was originally hoped that the mean-reversion property would frequently result in all columns achieving
balanced twist simultaneously after a reasonable amount of time. In fact, it is known [5] that the average
first time for one column to return to balanced twist is 22𝑅/

(2𝑅
𝑅

)
, which is approximately

√
𝜋𝑅. We can

follow a similar method to show that the average first time for all of the columns to return to balanced twist
is 22𝑘𝑅+1−𝑘/

(2𝑅
𝑅

) 𝑘 , which is approximately 1
2𝑘−1 (𝜋𝑅)

𝑘/2. The proof of this, and a discussion of the standard
deviation of this time, may be found in the Appendix.

Experiments with the computer program showed that waiting for balance to appear spontaneously was
not entirely satisfactory. With 𝑘 = 3 columns and 𝑅 = 4 maximum twist, that would require an average of
524288/42875 ≈ 12.2 half-diamonds (with a standard deviation of ≈ 12.5), each of which corresponds to
four turns of the cards. This might correspond to an approximately 3.6-inch pattern repeat using a typical
weight of thread. This is not unreasonable, but patterns with 𝑅 = 4 maximum twist seem to have insufficient
variety for a repeat this long. On the other hand, 𝑘 = 3 columns and 𝑅 = 8 maximum twist would require
an average of approximately 33 half-diamonds (with a standard deviation of ≈ 38.3), or approximately 9.6
inches before the pattern repeats. This is certainly not impossible, but following such a long pattern would
be quite taxing for the average weaver. Of course, the large standard deviations mean that some much shorter
patterns will appear, as well as some much longer ones.
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In lieu of waiting for balance to appear, the program reverses direction after a specified number of steps
and generates the mirror image of the original pattern. In this way, the program generates designs that can
be repeated along a strip of fabric without building up twist. Since many tablet weaving patterns also have
a line of symmetry along the length of the band, the pattern was additionally mirrored across this line, as
shown in Figures 5b, 5c, and 5d. As previously mentioned, there is no data structure representing the pattern
as a whole, so this symmetry is achieved by drawing all four quadrants of the pattern simultaneously, from
the ends into the middle.

(a) (b) (c) (d)

Figure 5: (a) Egyptian diagonals pattern with columns shown by color and half-diamonds drawn.
(b) Randomly generated pattern with maximum twist 𝑅 = 4. (c) Randomly generated pattern

with maximum twist 𝑅 = 4. (d) Randomly generated pattern with maximum twist 𝑅 = 8.

I wove a number of variations of the pattern in Figure 5b in order to see how it looked as a physical
object and how difficult it was to weave. The most challenging part turned out to be making sure I had the
correct number of turns before I changed the turning directions of the cards. It took longer to develop a good
weaving rhythm than with the patterns of Figures 3a and 3b, but once I had a good rhythm the actual weaving
was not too difficult.

More Advanced Models

Another way to spontaneously achieve balanced twist within a reasonable number of steps would be a time-
dependent system where the mean-reverting tendency grew stronger as the length of the pattern increased. I
modified my program to replace the standard Ehrenfest probability with a formula depending on the current
time 𝑡 and the desired pattern length 𝐿. There were two different versions of this formula:

1
2

(
1 − 𝑘𝐿

𝑅(𝐿 − 𝑡) + |𝑘 | 𝑡

)
, 0 ≤ 𝑡 ≤ 𝐿 (2)

and
1
2

(
1 − 𝑘 (𝐿 − 𝑡)

𝑅𝐿
− 𝑘𝑡

|𝑘 | 𝐿

)
, 0 ≤ 𝑡 ≤ 𝐿. (3)

Both of these formulas interpolate between the Ehrenfest formula (1), when 𝑡 = 0, and either 0 or 1 (depending
on the sign of 𝑘), when 𝑡 = 𝐿.

My initial fear was that this would introduce a fundamental asymmetry which would be displeasing.
However, this does not seem to have been the case, at least for relatively short patterns with somewhat limited
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maximum twist. Both of these equations produce aesthetically pleasing patterns which can be repeated
indefinitely without building up twist. There does not seem to be any strong reason to prefer one over the
other, although more testing may reveal something. Selected examples using each equation are shown in
Figures 6a–6d; each shows slightly less than two complete repeats of the pattern. A physically woven example
of Figure 6c is shown in Figure 4c; this amount of pattern took about 20 minutes of weaving time, which I
would estimate is a little more per inch than Figure 3d and approximately 1.5 times as much as patterns like
Figures 3a and 3b.

(a) (b) (c) (d)

Figure 6: (a) and (b) Randomly generated patterns using (2) with 𝑅 = 4 and 𝐿 = 24.
(c) and (d) Randomly generated patterns using (3) with 𝑅 = 4 and 𝐿 = 24.

Discussion and Future Work

It still seems reasonable that a different model could spontaneously achieve balanced twist without time-
dependence. One idea is to “couple” nearby columns (or even all of the columns) so that if any of them were
far from balance they would all be pulled more strongly towards it. An attempt was made to do this using
a neighborhood of three columns, similar to an elementary cellular automaton. Unfortunately, this did not
seem to achieve the desired effect. After a reasonable number of steps the system reached a state where each
column was nearly in balance, but getting them all exactly into balance simultaneously still took longer than
desired. More investigation into this idea seems warranted, perhaps using the theory of probabilistic cellular
automata.

Another possibility for future work would be generalizing the Markov chain to a process where the
probabilities of the events depend on the amounts of twist during the past𝑚 time steps for some finite number
𝑚. This might be helpful to “lock in” situations which are oscillating near balance, such as those described
in the previous paragraph. In addition, adding this sort of memory to the Markov chain might be useful for

Holden

170



emphasizing the stripe patterns characteristic of Egyptian Diagonals.
Finally, there aremanymore types of tablet-weaving patterns yet to be explored beyond Coptic Diamonds

and Egyptian Diagonals. These vary in the colors and patterns with which the cards are threaded, the numbers
of holes in the cards, and the design aesthetics.

Appendix: Mathematical Proofs

Mark Kac [5] first computed the explicit probability 𝑃(𝑛|𝑚; 𝑠) that a particle in the Ehrenfest model starting
in position 𝑛 will be in position 𝑚 after 𝑠 steps, using the eigenvalues of a stochastic matrix associated with
the Ehrenfest process. He then used a generating function associated with 𝑃(𝑛|𝑚; 𝑠) to implicitly compute
𝑃′(𝑛|𝑚; 𝑠), the probability that the particle starting in position 𝑛 will be in position 𝑚 for the first time after 𝑠
steps, in the form of a generating function. He finally uses this generating function to get an explicit formula
for the average amount of time it takes a particle in position 𝑛 to return to that position for the first time. We
will follow the same outline to calculate the average first time for 𝑘 Ehrenfest processes to simultaneously
return to a starting point.

Modeling our notation on that of [5], we let 𝑃𝑘 (𝑛|𝑚; 𝑠) be the probability that the twist in every column
is 𝑚 after 𝑠 steps, given that every column started with twist 𝑛. Similarly, let 𝑃′

𝑘
(𝑛|𝑚; 𝑠) be the probability

that the twist in every column is for the first time simultaneously 𝑚 after 𝑠 steps, given that every column
started with twist 𝑛. Equation (62) of [5] gives the explicit formula for 𝑃(𝑛|𝑚; 𝑠):

𝑃(𝑛|𝑚; 𝑠) =
(
(−1)𝑅+𝑛
22𝑅

𝑅∑︁
𝑗=−𝑅

(
𝑗

𝑅

)𝑠
𝐶

(−𝑛)
𝑅+ 𝑗 𝐶

( 𝑗)
𝑅+𝑚

)
,

where 𝐶 ( 𝑗)
𝑚 is the coefficient of 𝑧𝑚 in (1 − 𝑧)𝑅− 𝑗 (1 + 𝑧)𝑅+ 𝑗 . (For example, 𝐶 (0)

𝑚 = (−1)𝑚/2 ( 𝑅
𝑚/2

)
if 𝑚 is even

and 0 otherwise.) Since we are treating the columns as 𝑘 independent Ehrenfest processes, we have

𝑃𝑘 (𝑛|𝑚; 𝑠) =
(
(−1)𝑅+𝑛
22𝑅

𝑅∑︁
𝑗=−𝑅

(
𝑗

𝑅

)𝑠
𝐶

(−𝑛)
𝑅+ 𝑗 𝐶

( 𝑗)
𝑅+𝑚

) 𝑘
.

We expand this using the multinomial theorem to get

𝑃𝑘 (𝑛|𝑚; 𝑠) =
(−1)𝑘𝑅+𝑘𝑛
22𝑘𝑅

∑︁
𝛼𝛼𝛼

(
𝑘

𝛼𝛼𝛼

) 𝑅∏
𝑗=−𝑅

((
𝑗

𝑅

)𝑠
𝐶

(−𝑛)
𝑅+ 𝑗 𝐶

( 𝑗)
𝑅+𝑚

)𝛼𝑗

,

where𝛼𝛼𝛼 = (𝛼−𝑅, . . . 𝛼𝑅) is a composition of 𝑘 into 2𝑅+1 nonnegative pieces,
(𝑘
𝛼𝛼𝛼

)
is the multinomial symbol,

and the summation is over all such 𝛼𝛼𝛼.
Given this, we can form the generating functions

ℎ𝑘 (𝑛|𝑚; 𝑧) =
∞∑︁
𝑠=1

𝑃𝑘 (𝑛|𝑚; 𝑠)𝑧𝑠, 𝑔𝑘 (𝑛|𝑚; 𝑧) =
∞∑︁
𝑠=1

𝑃′
𝑘 (𝑛|𝑚; 𝑠)𝑧

𝑠,

and the average number of steps \𝑘 (𝑛) to return for the first time to simultaneous twist 𝑛, starting at
simultaneous twist 𝑛, is

\𝑘 (𝑛) =
∞∑︁
𝑠=1

𝑠𝑃′
𝑘 (𝑛|𝑚; 𝑠)𝑧

𝑠 = lim
𝑧→1

𝑑

𝑑𝑧
𝑔(𝑛|𝑛; 𝑧).
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From Equation (62) of [5], we have

𝑃𝑘 (𝑛|𝑚; 𝑠) = 𝑃′(𝑛|𝑚; 𝑠) +
𝑠−1∑︁
𝑟=1

𝑃′(𝑛|𝑚; 𝑘)𝑃(𝑚 |𝑚; 𝑠 − 𝑘),

reflecting the fact that in order to reach a state you reach it the first time and then zero or more times after
that. This is equivalent to

ℎ𝑘 (𝑛|𝑚; 𝑧) = 𝑔𝑘 (𝑛|𝑚; 𝑧) + ℎ(𝑚 |𝑚; 𝑧)𝑔(𝑛|𝑚; 𝑧), or 𝑔𝑘 (𝑛|𝑚; 𝑧) =
ℎ𝑘 (𝑛|𝑚; 𝑧)
1 + ℎ𝑘 (𝑚 |𝑚; 𝑧) .

Using the multinomial theorem, we can show that

1 + ℎ𝑘 (𝑛|𝑚; 𝑧) =
(−1)𝑘𝑅+𝑘𝑛
22𝑘𝑅

∑︁
𝛼𝛼𝛼

(
𝑘

𝛼𝛼𝛼

) 𝑅∏
𝑗=−𝑅

(
𝐶

(−𝑛)
𝑅+ 𝑗 𝐶

( 𝑗)
𝑅+𝑚

)𝛼𝑗

(
1 − 𝑧

𝑅∏
𝑗=−𝑅

(
𝑗

𝑅

)𝛼𝑗

)−1
.

The denominator on the right is zero if and only if
∏𝑅

𝑗=−𝑅

(
𝑗

𝑅

)𝛼𝑗

= 1, which happens exactly when 𝛼 𝑗 = 0
for 𝑗 ≠ ±𝑅 and 𝛼−𝑅 is even. Thus

1 + ℎ𝑘 (𝑛|𝑚; 𝑧) = 𝑝𝑘 (𝑧) +
©«
(−1)𝑘𝑅+𝑘𝑛
22𝑘𝑅

𝑘∑︁
𝛼−𝑅=0
𝛼𝑅 even

(
𝑘

𝛼−𝑅

) (
𝐶

(−𝑛)
0 𝐶

(−𝑅)
𝑅+𝑛

)𝛼−𝑅 (
𝐶

(−𝑛)
2𝑅 𝐶

(𝑅)
𝑅+𝑛

) 𝑘−𝛼−𝑅ª®®¬
1
1 − 𝑧

= 𝑝𝑘 (𝑧) +
1

22𝑘𝑅+1−𝑘

(
2𝑅
𝑅 + 𝑛

) 𝑘 1
1 − 𝑧

where 𝑝𝑘 (𝑧) is a rational function which is finite at 𝑧 = 1. Then

\𝑘 (𝑛) = lim
𝑧→1

(1 − 𝑧)2𝑝′(𝑧) + 𝜔𝑘

((1 − 𝑧)𝑝𝑘 (𝑧) + 𝜔𝑘)2
=
1
𝜔𝑘

,

where 𝜔𝑘 = 1
22𝑘𝑅+1−𝑘

( 2𝑅
𝑅+𝑛

) 𝑘 . In particular, \𝑘 (0) = 22𝑘𝑅+1−𝑘/(2𝑅𝑅 ) 𝑘 . Using Stirling’s approximation for the
factorial, the average first time for 𝑘 columns to return is ≈ 1

2𝑘−1 (𝜋𝑅)
𝑘/2.

Kac noted that the variance and standard deviation of the recurrence time can also be calculated from
the generating function by first calculating the second moment. In our case, we find that the second moment
of the recurrence time is lim𝑧→1

𝑑2

𝑑𝑧2
𝑔(𝑛|𝑛; 𝑧) = 2𝑝𝑘 (1)\𝑘 (𝑛)2. Unfortunately, I have not been able to find

a closed form formula for 𝑝𝑘 (1), although the values can be calculated numerically. The variance is then
calculated from the second moment with the results given earlier in the paper.
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