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Abstract  

The purpose of this paper is to develop the Islamic geometric patterns from planar coordinates to three dimensions 
with aperiodic symmetry. We are proposing techniques that cover four families of girih: acute, median, obtuse, and 
two-point tessellation by using the historical method, polygons in contact (PIC), in our pattern production. What’s 
more, we employ Penrose P2 and P3 prototiles as our main template. This study effectively answers the question 
regarding the gap between planar design from medieval Islamic architecture and contemporary demands in modern 
art and design.  

 
Introduction 

The studies of Islamic art and ornament has shown that the Islamic artisans had a vision for developing 
their design consistency. They developed their design from simple cross-star (grid) patterns to sophisticated 
dual-level design. However, there is no unanimity among researchers about the existence of self-similar 
and/or quasicrystalline structures in the historical examples. Therefore, we are interested in generating 
three-dimensional aperiodic designs both to develop Islamic geometric patterns in a higher dimensions and 
to create their planar aperiodic projections (Figure 1). 

 
 

                    (a)                                (b)                                  (c)                                               (d)              
Figure 1:  The process of our investigation to create 3D aperiodic girih: (a) Penrose P2, kite and dart 

prototiles, (b) orthogonal projection on vertices of P2 tile that results in 3D Penrose tiling, (c) traditional 
girih tiles, and (d) the output of our studies 

 
Covering a surface with 5, 8, 10, and 12 axes of symmetry with only translational symmetry is impossible 
and results in gaps in the tiling. Aperiodic tessellation was discovered by mathematicians in the early 1960s 
and after twenty years, made its way to the study of natural quasicrystals. Dan Shechtman discovered an 
alloy, aluminum-manganese, in 1984, which had unusual diffractograms that today are known as revelatory 
of quasicrystal structures [11]. Due to the importance of aperiodic tiling, we will describe Penrose prototiles 
and their lattice projection tilings in the first section. In the next section, we show the way to associate a 
girih pattern with Penrose tiling. In the last part, we are demonstrating the results of Penrose-type tiling in 
3D. 
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3D Penrose Tiling 
The beginning of the application of subdivision and inflation to build a quasiperiodic tessellation, which 
excludes translational symmetry, came to prominence in the 1970s. The Penrose kite and dart, which was 
the result of an investigation in aperiodic sets of tiles, was the most famous example. Roger Penrose 
proposed aperiodic tiling under three types and named them P1, P2, and P3 [6]. Furthermore, those types 
can create an aperiodic tiling through three separate methods, including self-similar subdivision, tiles with 
matching rules, and projection of a slice of a cubic lattice in ℝ5 [2]. Penrose tilings feature a finite number 
of shapes, known as prototiles, which can tile the plane with no gaps or overlaps. Penrose prototiles also 
have many common features derived from the pentagon, and consequently, the golden ratio. The technical 
details and matching rule proofs are described by Martin Gardner [5] (Figure 2). Penrose P1 has six 
prototiles that create more complexity in both mathematics and geometry. For this reason, we exclude this 
set of tiles from our method. 
 

 
                                                (a)                                                                            (b)                                         

Figure 2:  Penrose prototiles and their relation to the pentagon (golden ratio): (a) the Kite and Dart 
tiling (P2) and (b) the rhombus tiling (P3). 

 
De Bruijn [3] devised a method based on the pentagrid tiling to construct an infinite aperiodic plane without 
the use of inflation and substitution. This technique has very striking results which one of that states by 
raising the vertices (by a particular method of indexing the vertices) of the thin and thick rhombi in three 
dimensions, all of the rhombi can be forced to be congruent, and results in 3D Penrose tiling [3, 6]. Later, 
Duneau and Katz systematized this method and proved that the 3D Penrose tiling can be obtained by a 
projection from a 6D unit cubic lattice.  In general, they proved that we can project any point in tilings from 
p-dimensional space ℝ𝑛𝑛 as the projection, from a higher-dimensional space ℝ𝑚𝑚, where 𝑚𝑚 > 𝑛𝑛  [4]. 

 
                     (a)                                                                                                                       (b)                    

Figure 3:  Three dimensional Penrose patterns or as de Bruijn called them, Wieringa roofs [3], in the 
hope that some enterprising architect would use it for the ceiling of a large room [6]: (a) the orthogonal 

projection on the horizontal plane for the thick rhombus and (b) the orthogonal projection on the 
horizontal plane for the thin rhombus 

 
The orthogonal projection on the horizontal plane is a thick rhombus, and the short horizontal diagonal of 
the space rhombus is projected as the short diagonal of the thick rhombus. Likewise, the orthogonal 
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projection is a thin rhombus, and the long horizontal diagonal of the space rhombus is projected as the long 
diagonal of the thin rhombus. These orthogonal tiles are called golden rhombi, because the ratio the long 
diameter to the short diameter is 1:𝜑𝜑 (1:1.618033987….), which is the golden ratio. The golden rhombus 
is our base template for mapping girih patterns in three-dimensional aperiodic tiling. Now the question is 
how to appropriately fill the golden rhombus with girih tiles? 
 

Geometric Transformation 
Rigby [10] introduced the idea of generating aperiodic girih patterns using kite and dart prototiles and called 
them Penrose-type Islamic patterns. Therefore, the concept of generating planar Islamic aperiodic patterns 
is not new. Likewise, Bonner and Kaplan [1] illustrated Penrose rhombi prototypes with the polygons in 
contact (PIC) method. We used the PIC method for creating girih tiles, which were first introduced by 
Hankin [8] based on his observations in a historical area in India. This method has been developed and 
analyzed by many researchers throughout the years. Jay Bonner [1] established his method based on the 
Hankin method and investigated different methodologies for reaching the optimal way to create girih 
patterns. Consequently, we are using his method for creating our designs in P2 and P3 sets of tiles. We 
chose ten-pointed stars as the fivefold system.  

 
                          (a)                                                       (b)                                                     (c)                          
Figure 4:  The polygonal arrangements in P2 and P3 prototiles in: (a) kite and dart, (b) thick rhombus, 

(c) thin rhombus 
 
As a result, we centered a decagon at each vertex of the prototiles to begin our girih tessellation (Figure 4). 
The scale factor between rhombi and the side of the girih tiles, define the polygonal arrangements for the 
populating the rhombi. This scale factor is an expression of the inherent proportions of the generative 
system. In our case, the scale factor is 2 × ��(𝜙𝜙 + 1)2 − (𝜙𝜙/2)2� ≈ 1: 1.498, which has the Figure 4 
arrangement. 

 
                            (a)                                                     (b)                                                  (c)                
Figure 5:  Geometric transformation in P2 and P3 prototiles: (a) kite and dart stretch with the invariant 
of the x-axis, (b) thick rhombus stretch with the invariant of the x-axis, and (c) thin rhombus stretch with 

the invariant of the y-axis 
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We use the ratios between the golden rhombi and the Penrose prototiles to define a geometric transformation 
mapping the girih patterns onto our templates. It can be obtained with either the stretch transformation or 
one-dimensional scaling with just one axis depending on the type of prototile. For the thin rhombus, the 
stretch factor (k) is 1.90 with the invariant y-axis (Eq. 1). Also, due to the fact that P3 prototiles are 
corresponding to the P2 prototiles, the thick and the congruent kite and dart have the same ratio. For this 
reason, they have the same stretch factor, 1.17, but this time the x-axis is invariant (Eq. 2). The following 
matrices map the vertices of the original P2 and P3 to the golden rhombus. 

�1.90 0
0 1� (1)        �1 0

0 1.17� (2)   
As we can see in Figure 5, we have the girih tiles scaled to the golden rhombi and ready to tile the space. 
in the next section, we review different alternatives for creating 3D patterns. 
 

3D Girih Tiling Alternatives 
The underlying polygons which demonstrated in Figure 4 and 5 have the ability to create a wide range of 
patterns. In this section, we show the girih families arising from different conditions. These types of girih 
are categorized based on their angles on the underlying polygons. The angle between lines extracted from 
the midpoint represents each family. For the acute family, the angle is 36°; for the median family, the angle 
is 72°, and for the obtuse family, the angle, is 108°. Two-point tilings extract lines from two points with 
equal distance from each other. With all that said, we have P2 and P3 prototiles ready for tiling. These all 
gives us 16 different prototiles, and 8 different tiling in total, which is presented in Table 1.  
 

Table 1:  The full range of pattern production with the four families of girih 
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Making Some Girih Tiling! 
Now it is time to use our algorithm to create 3D patterns with the help of computer-aided design and 
manufacturing (CAD/CAM). For the sake of prototyping, paper was preliminarily used as a material for 
generating tiles. By taping the edges of the tiles, we can complete the tessellation. The Grasshopper plugin 
was used to generate a precise model to optimize no gaps in different materials. Figure 6 shows the models 
that were produced by creating a script for the Girih pattern. A separate script was developed for each of 
the four families of girih tiles described in Table 1. Different materials were combined with different digital 
fabrication methods. The materials explored were: paper, cardboard, and plexiglass. Laser Cutting and CNC 
were our fabrication methods. 
 

 
                           (a)                                                      (b)                                                    (c)                         

Figure 6:  Paper and cardboard models of Penrose-girih tiles: (a) aperiodic acute ten-pointed star, 
paper model, (b) aperiodic obtuse five-pointed star, (c) rhombic hexecontahedron model with obtuse ten-

pointed star on the faces 
 

 
 
                           (a)                                                      (b)                                                    (c)                         

Figure 7:  Playing with light and shadow: (a) rhombic hexecontahedron, (b) ten-pointed star kite and 
dart pattern, (c) Median ten-pointed star kite and dart pattern with widened line 

 
Our goal was to produce physical models and prototypes for interactive use of 3D girih. In the first model, 
we constructed 3D P3 tiles as the surfaces that were laser cut and glued from paper. The flexibility of the 
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paper allowed us to determine the possibilities of tiles with curved surfaces such as dome and squinches 
(Figure 6). In the next stage, we used cardboard, which has the potential to create void boundaries on the 
surface without deformation. This unique feature generates girih shadows that have the planar girih 
specifications, with the help of the beam of lights (Figure 7a).  
Now, how about using our golden rhombus template for generating stellation? In geometry, stellation is the 
operation of creating polyhedra by increasing the facial planes past the polyhedron edges of a given 
polyhedron until they intersect. The rhombic hexecontahedron (RH) is among the stellations that have 60 
golden rhombic faces with icosahedral symmetry, and they are self-supporting stellations of the rhombic 
triacontahedron. Also, in a 1987 article, Guyot [7] reported the appearance of the RH shape in quasicrystals. 
The relation of RH solids and quasicrystals form is not clear yet, and there is controversy among the scholars 
but, partial planar projection of RH reveals thin and thick Penrose prototiles. These all features inspired us 
to create a hollow self-support RH girih, demonstrated in Figure 6c. Sándor Kabai has done many studies 
in this area, and the stellations of RT are detailed and proofed in his article [9]. 
 

Summary and Future Work 
We have shown an algorithm for generating 3D Penrose girih. There are certainly other methods for creating 
the 3D pattern; nevertheless, we have presented a high range variation of patterns. Further study and work 
is needed to establish complex symmetries in other sets of art like dual-level designs. As an example, we 
are working on optimizing these patterns for self-supporting structures, and eventually, they would work 
as roof coverage. We hope to report some retractable-girih structures in the near future. 
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