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Abstract
I describe four mathematical designs for EGMO 2020, the European Girls’ Mathematical Olympiad hosted by the
Netherlands: an on-stage collaborative activity for the team parade, a sculpture, an animation movie, and a braided
puzzle bracelet. All the designs are related and are (also) intended to attract attention to some nice accessible
mathematics with interesting open problems.

Introduction

The European Girls’ Mathematical Olympiad (EGMO, [1]) is a competition modeled after the International
Mathematical Olympiad (IMO, [5]). The aims of the IMO are (cited from the IMO Regulations):

• to discover, encourage and challenge mathematically gifted young people in all countries;
• to foster friendly international relationships among mathematicians of all countries;
• to create an opportunity for the exchange of information on school syllabuses and practices throughout
the world;

• to promote mathematics generally.

According to the EGMO Regulations, the aim of the EGMO is to give more girls an opportunity to perform
mathematically on an international stage, and so to discover, encourage and challenge mathematically gifted
young women in all European countries.

Each country participating in the EGMO sends a team consisting of a leader, a deputy leader, and (at
most) four female high-school students. The EGMOprogram includes an opening ceremony, two competition
days, social events, excursions, and a closing ceremony where awards are presented. The first EGMO was
held in Cambridge, United Kingdom, in April 2012, and the ninth EGMO was organized by the Netherlands
on April 15–21, 2020 [2]. Due to the Corona-virus pandemic EGMO 2020 was reconceived as a virtual
(online) event.

This paper concerns four related designs prepared for EGMO 2020:

• the team parade
• a sculpture
• a computer animation
• a puzzle bracelet

In the following sections, we present the various design constraints, inspirations, considerations, trade-offs,
and resulting designs. This paper is written from the author’s standpoint as a designer prior to the event.
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Team Parade at the Opening Ceremony

EGMO 2020 is expected to have about 60 participating teams [3], most from Europe, but also from elsewhere.
During the opening ceremony, each team gets some stage time with their deputy leader and country flag. The
organizer’s goal is to complete the team parade in about 15 minutes, or 15 × 60 seconds. Without margin,
this gives each team 15 seconds to enter, to be on, and to exit the stage. Every second per team extra makes
the team parade last one minute longer. Furthermore, just being on stage is not much fun, neither for the
team, nor for the audience. So, we want to offer a framework for the team parade that will make it a smooth
and interesting happening.

While attending the opening ceremony of the 50-th IMO in Germany in 2009, I already contemplated
the team parade, which back then took a long time and was not very interesting to watch. In [8], I described
an activity for an IMO team to perform on stage during the team parade. To summarize:

• The team of six participants lines up on stage wearing colored shirts, say three white on the left and
three orange on the right (this is for the Dutch team).

• They perform a carefully choreographed sequence of neighbor swaps, where two adjacent teammembers
of different colors trade places.

• After 19 such swaps, it turns out that they end up with three orange shirts on the left and three white on
the right, and all

(6
3
)
= 20 permutations have been shown exactly once.

This proposal was worked out in the lecture performance Lehmer’s Dance [7]. EGMO teams are smaller, but
even then it makes little sense to have every team do the same thing.

I then had the idea to let the teams collaborate on permuting a sequence, where each team does only
one or two neighbor swaps. An important question is: What to put in that sequence? If only team members
permute, then the maximum number of distinct permutations is 24 (when all members wear distinguishable
colors). With 60 participating teams, we would need to triplicate most permutations.

That is why I considered sequences of five objects, say by also involving the deputy leader. When all
objects are distinguishable, there are 5! = 120 permutations. In that case, each team would need to do two
swaps. That number can be reduced by making some objects indistinguishable. When two objects are made
indistinguishable, say by considering the letter sequence O E G M O, the number of permutations drops to( 5
1 1 1 2

)
= 5!

2! = 60. However, there is a concern that among the permutations of these letters there could be
objectionable combinations. Working with colors instead of letters would solve that, but an extra layer of
meaning would help to attract attention.

An alternative (eventually chosen by the organizers) is to consider the sequence 2 0 2 0, where is the
EGMO-2020 logo. This sequence has two pairs of indistinguishable objects and, hence,

( 5
1 2 2

)
= 5!

2!×2! = 30
permutations. That does mean that, roughly, every permutation has to be shown twice. An additional issue
is that for this sequence it is impossible to present every permutation exactly once by doing just neighbor
swaps [9]. It is possible with two duplications, but not with fewer. Moreover, it can be arranged that with one
more swap the initial permutation reappears (a cycle). This actually makes it more attractive than working
with A B C D E or O E G M O, because it involves new and partly unsolved mathematics.

To analyze this further, it is helpful to introduce the neighbor-swap graph, which has the permutations
as vertices, and neighbor swaps as its edges. That is, two vertices are connected by an edge when the
corresponding permutations differ by a single neighbor swap (see Figure 1). We are looking for paths in
this neighbor-swap graph that visit all vertices with a minimum number of duplications. It is known that, in
general (cf. [9, §2]), this graph admits a Hamiltonian path when either the graph is linear (a chain) or at least
two of the ‘color’ frequencies are odd. Furthermore, it admits a Hamiltonian cycle when in addition there
are at least three colors and their frequencies are not one, one, and an even number.
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Figure 1: Neighbor-swap graphs for permutations of 2020 (left) and 12020 (right)

Replacing the EGMO-2020 logo by the digit 1, we are dealing with permutations of 12020 having ‘color’
frequencies [2, 1, 2]. Its neighbor-swap graph (see Figure 1, right) has 30 vertices and 48 edges. It does
not admit a Hamiltonian path or cycle (nor does there exist a path that visits each vertex exactly twice). But
(this is Lehmer’s 1965 conjecture) it could admit an imperfect Hamiltonian cycle with some vertices that are
visited twice in the so-called ‘spur’ pattern, that is, with a single vertex (the spur’s tip) between the duplicates
(the spur’s base); cf. Figure 1, left. In [9, Lemma 6 and Conjecture 8], it is conjectured that in general the
so-called stutter permutations can serve as spur tips. The stutter permutations of 12020 are 00221 and
22001, having doubled digits from the left. In this particular case, it is easy to verify that such a cycle exists.
Figure 2 shows the eight Hamiltonian cycles on the non-stutter permutations, that is, without the two spurs
(at the bottom left and right; each spur can be added in two ways, e.g., as . . . 22010, 22001, 22010, . . .).

���� ��

� � � �

� � � �

Figure 2: Hamilton cycles on the non-stutter permutations in the neighbor-swap graph for 12020 (which is
marked red), in the order that Mathematica found them

The neighbor-swap graph in Figure 1 has an order-4 symmetry group generated by (i) swapping the role of 0
and 2 (a half turn about the vertical axis in the figure) and (ii) reversing the permutations (a half turn about
the horizontal axis in the figure). The Hamiltonian cycles in Figure 2 match up in two pairs (a–g and e–h) that
are related by a half turn about the vertical axis. The remaining and four have this half turn as a symmetry.
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To give each team something to do, we can combine two imperfect cycles. For reasons of diversity, I
would like to select two cycles such that together they maximize the number of edges visted. By inspection
of Figure 2, there are 18 edges common to all cycles (Figure 3, left), and 8 edges appear in none of the
cycles (Figure 3, middle). The size of the symmetric difference between pairs of cycles is thus at most
44 − 18 − 8 = 18. The actual size of the symmetric difference between pairs of cycles is shown in Fig 3
(right).

� � � � � � � ℎ

� 0 6 8 8 8 14 8 16
� 6 0 8 8 14 8 6 14
� 8 8 0 8 8 8 8 8
� 8 8 8 0 8 8 8 8
� 8 14 8 8 0 6 16 8
� 14 8 8 8 6 0 14 6
� 8 6 8 8 16 14 0 8
ℎ 16 14 8 8 8 6 8 0

Figure 3: Cycles �–�: common edges (left), all edges (middle), size of symmetric differences (right)

Somewhat arbitrarily, I chose cycles � and � achieving the largest symmetric difference of 16. These have
two edges in common that are not forced (at the bottom of the graph). There are still various options to
include the stutter permutations via spurs. Since the paths will be traversed in a particular direction, it would
be good to try to traverse the common edges in opposite direction (as much as possible).

The start and end vertex will be 12020. I would like to avoid visiting that permutation halfway again,
because returning there is the ultimate resolution. This can be accomplished by suitably combining the
cycles, and just before closing the first cycle, transfer to the second cycle. Another goal is to delay the spurs,
with their double visit, as much as possible. The result is the following walk involving 62 swaps:

12020 → 10220 → 01220 → 01202 → 02102 → 20102 → 20012 → 02012 →
00212 → 00221 → 00212 → 00122 → 01022 → 10022 → 10202 → 12002 →
21002 → 21020 → 20120 → 02120 → 02210 → 02201 → 02021 → 20021 →
20201 → 20210 → 22010 → 22001 → 22010 → 22100 → 21200 → 12200 →
12020 → 12200 → 21200 → 22100 → 22010 → 20210 → 02210 → 02120 →
02102 → 01202 → 01220 → 10220 → 10202 → 10022 → 01022 → 00122 →
00212 → 02012 → 02021 → 00221 → 02021 → 02201 → 20201 → 22001 →
20201 → 20021 → 20012 → 20102 → 20120 → 21020 → 21002 → 12002 →
12020

The two permutations shown in grey are skipped, to avoid returning to the initial/final vertices in the
middle. The underlined vertices are the stutter permutations (the vertices before and after them are the same:
unavoidable duplications).

To simplify execution, the four adjacent pairs in a permutation are labeled from left to right as A B C D.
Thus, the whole walk can be expressed as:

BADBACAB DDCBACBA DBACDCAC DBDDCBAB BABCBACD BDADCABC BDBBCABB CDCDBDAD

On stage, there will be five objects showing the EGMO 2020 logo and the digits 2 0 2 0. Taped on the stage
floor, between those objects are the labels A through D. Just before a team goes on stage, they receive the letter
of the swap they need to perform. When there are fewer than 62 teams, the Dutch team will perform multiple
swaps. The audience will not be told what is going to happen, nor will the teams know the overall plan. They
need to figure this out, as the swaps are performed. This will be supported by the animation discussed below,
and an explanation afterwards.
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There is one objection to the proposed walk in the graph: the second cycle begins by retracing the first
cycle in reverse order for three swaps (see the part ...CBAB BABC...). This can be avoided by ‘turning the
graph upside-down’ (by a half-turn about a horizontal axis), and using 10022 and 12200 as spur tips. Then
we can use:

DBACAABC DBCDACDB DCAABCDB CDACDBAB BDCCBABA CADABDCB CDBACADA BDCBAACA

Sculpture: 3D Rendering of Neighbor-swap Graph

To get a better grasp of the neighbor-swap graph for the permutations of 00122, it is helpful to design a 3D
rendering that has the same symmetry group (but now in terms of geometric transformations, rather than
combinatoric transformations). Symmetries of graph: swap role of 0 and 2; reverse order

A natural 3D embedding is obtained by mapping (for instance) the index of 1 in the permutation into the
�-coordinate. Then drop the 1 from the permutation and map the index of the leftmost 0 into the �-coordinate
and the index of the rightmost 0 into the �-coordinate. This results in the rendering shown on the far left in
Figure 4. Permutation 10022 is placed at (1, 2, 1), and 22001 at (3, 4, 5).

Figure 4: 3D renderings of the neighbor-swap graph for 00122

This has only one (non-trivial) symmetry: a half-turn about the horizontal axis (1, 1, 0). By flipping the
left wing backwards (Figure 4, middle left), we obtain a rendering that has a half-turn about the vertical
axis as a symmetry, but no longer the horizontal half-turn. Putting the two wings in the halfway position
(Figure 4, middle right) results in a structure with both the horizontal and vertical half-turns as symmetries.
Neighbor-swap graphs turn out to have only two types of shortest cycles: quadrangles and hexagons. The
hexagonal cycles can be made more prominent by squeezing the design vertically, keeping all the edge lengths
the same (Figure 4 far right).

The latter design can be parameterized by two angles: the angle 2� of the quadrangle on the base (which
is in fact is rhombus) and the angle 2� of the four central hexagons. This forces the angle 2� of the hexagons
in the wings. Unfortunately, � and � cannot be made equal, unless the rhombs degenerate (zero area). But
the areas of the hexagons can be equalized (with 2� ≈ 108.8◦ and 2� ≈ 131.4◦, as shown in Figure 4).

I am still investigating the possibility to construct the last design using branching miter joints [10] and
polygonal beams (preferably with a square or triangular cross section) such that all the longitudinal beam
edges nicely meet at the joints.

Computer Animation

As visual support for the team parade and as a further illustration of walks in neighbor-swap graphs, I made
a computer animation. The animation starts with an empty scene, and as the team parade progresses, the
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relevant edges and vertices are added to the scene. Halfway, all vertices will have appeared. The second
walk through the graph removes edges and vertices as they are revisited, tearing down the graph until it has
completely disappeared.

The camera starts zoomed in on the first vertex and zooms out as more vertices appear. Then the camera
starts to rotate around the (partial) graph, giving the viewer a better feeling for its three-dimensional structure.
This rotation will also gradually reveal the storage location of all the parts. Since not all edges are traversed
by the two walks, I thought it would be a good idea to partly explore edges incident on the current vertex.
For that purpose, all edges consist of two cylinders that are controlled separately. Only when an untraversed
edge has been explored from both ends will it (dis)appear fully.

Figure 5: Frame from the computer animation (draft version)

The animation was programmed in Python and rendered using Blender [6]. A preliminary version of the
movie can be found as supplemental material in the Bridges archive.

Braided Puzzle Bracelet

Another kind of animation that could be done involves rendering the objects as they are being permuted.
This is like a dance, where the objects repeatedly change places in pairs. Figure 6 (top) shows a film of such
a dance for four colored dots arranged vertically, with one frame per permutation. By connecting the dots
horizontally, we get a continuous view of time: the scene is one-dimensional (the �-coordinate) and time is
the other dimension (the �-coordinate); see Figure 6 (middle).

The scene can also be made two-dimensional, in which case the choreographer has to decide how
objects switch places: they move around each other, either clockwise (CW) or counter-clockwise (CCW).
The resulting continuous film can be viewed as a braid (Figure 6, bottom), where each object corresponds to
a strand. To create a true braid, where over-under passings alternate, the choices for CW and CCW must be
made appropriately.

Verhoeff

294



Figure 6: Cycle of 24 permutations of 4 colored objects: dots (top), 2D braid (middle), 3D braid (bottom)

When animating such a dance, there are various ways in which location can change over time. That is,
there are all kinds of velocity profiles imaginable, and these determine the look of the crossing. Figure 7
shows three velocity profiles: circular (constant angular velocity), straight (projection is straight), helical
(smooth start and stop), helical flattened (where under-strand stays flat, and the over-strand moves more up).

Figure 7: Various velocity profiles for an exchange (crossing): circular, straight, helical, helical+flattened

The flattened version of the braid can be wound into a bracelet (technically, a bangle; Figure 8, left
and middle). To ease putting it on and taking it off and also to allow unweaving, the strands have been
cut. The cuts were chosen such that they do not appear on the outer strands, to reduce the risk catching on
something. Moreover, by not aligning the cuts, the puzzle of weaving the separate strands together becomes
more challenging. Aligned cuts would also be esthetically less pleasing.

Initially, we thought of applying this to the permutations of 12020, giving rise to a bangle with five
strands. We did not pursue this for several reasons. As a puzzle it is considerably harder because of duplicate
colors. The extra strand increased the cost. The four-strand version is based on the elegant and understandable
recursive Steinhaus–Johnson–Trotter algorithm. The plan is to produce monochrome sets in five different
colors, each team getting bangles in only one color. They are then encouraged to exchange strands with other
teams, to obtain multi-colored bangles. That way, the puzzle bangles also serve as a social mixing catalyst.
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Figure 8: Braid wound into a bangle; close-up of cuts (right)

Conclusions

I described four mathematical designs for the European Girls’ Mathematical Olympiad (EGMO) in the
Netherlands: the team parade, a sculpture, a computer animation, and a braided puzzle bracelet. All these
designs are based on the combinatorics of permuting a sequence of objects. A secondary goal is to attract
attention to a nice piece of accessible mathematics with interesting open problems.

Stringent international measures to curb spreading of the COVID-19 virus led to cancelation of the
physical event. But the organizers reconceived EGMO 2020 as a virtual (online) event. The opening
ceremony can be found on YouTube [4], including a virtual team parade (at 09:58), and an explanation by the
author (at 15:15). The sculpture and bangles have only been prototyped but have not (yet) been produced.

References

[1] “EGMO – European Girls’ Mathematical Olympiad.” https://www.egmo.org/
[2] “EGMO 2020 in the Netherlands (home page).” https://egmo2020.nl/
[3] “EGMO 2020 Statistics.” https://www.egmo.org/egmos/egmo9/
[4] “EGMO 2020 Virtual Opening Ceremony.” https://youtu.be/cnZ5nw4jQJc
[5] “IMO – International Mathematical Olympiad.” https://www.imo-official.org/
[6] Blender Foundation. “Blender.” https://blender.org/
[7] R. van Berkel and T. Verhoeff. “Lehmer’s Dance – A Lecture Performance.” Bridges Conference

Proceedings, Linz, Austria, July 16–20, 2019, pp. 375–378.
http://archive.bridgesmathart.org/2019/bridges2019-375.html

[8] T. Verhoeff. “Combinatorial Choreography.” Bridges Conference Proceedings, Towson MD, USA,
August 25–29, 2012, pp. 607–612. http://archive.bridgesmathart.org/2012/bridges2012-607.html

[9] T. Verhoeff. “The spurs of D. H. Lehmer: Hamiltonian Paths in Neighbor-swap Graphs of
Permutations.” Designs, Codes and Cryptography, vol. 84, no. 1, Jul. 2017, pp. 295–310.
https://doi.org/10.1007/s10623-016-0301-9

[10] T. Verhoeff and K. Verhoeff. “Branching Miter Joints: Principles and Artwork.” Bridges Conference
Proceedings, Pécs, Hungary, Jul. 24–28, 2010, pp. 27–34.
http://archive.bridgesmathart.org/2010/bridges2010-27.html

Verhoeff

296

https://www.egmo.org/
https://egmo2020.nl/
https://www.egmo.org/egmos/egmo9/
https://youtu.be/cnZ5nw4jQJc
https://www.imo-official.org/
https://blender.org/
http://archive.bridgesmathart.org/2019/bridges2019-375.html
http://archive.bridgesmathart.org/2012/bridges2012-607.html
https://doi.org/10.1007/s10623-016-0301-9
http://archive.bridgesmathart.org/2010/bridges2010-27.html



